|
Intel Core i3-N305 vs Intel Core i7-10750H |
|
Processor comparisons 29-09-2022 You may have difficulties with the choice of a CPU, you will solve them by reading the full tests Intel Core i3-N305 vs Intel Core i7-10750H and understand which is better for games or simple use for machine learning, video editing, rendering, programming, streaming. Here you can find useful information from real video editing and streaming tests or many benchmarks. A careful review of all the technical characteristics, to make it easier to understand, is presented in the form of the table. From the video comparison, you can get the results of parallel examination in software tests like AIDA64, PCMark 10, Furmark, 7zip, Blender, Dolphin Emulator, Blender, Handbrake, Gears 5, VeraCrypt, UserBenchmark, SuperPi, GeekBench 6, 5.2, World of Tanks enCore Benchmark, RealBench, MATLAB, Prime95, PassMark, DaVinci Resolve Studio, Cinebench 23 (20, 15), 3DMark, WPrime. And how good the processors are in games: - Valheim
- Cyberpunk 2077
- Grand Theft Auto V
- Apex Legends
- Assassin's Creed Valhalla
- Overwatch
- Halo Infinite
- DOOM: Eternal
- Valorant
- World of Warcraft: Shadowlands
- Fortnite
- Fallout 76
- Red Dead Redemption 2
- Borderlands 3
- Watch Dogs Legion
- Rainbow Six Siege
- Death Stranding
- Last Man Standing
- Call of Duty: Modern Warfare and Warzone
After reading the results of all benchmarks and videos, you can already make an informed decision about which CPU is better to buy for gaming Intel Core i7-10750H or Intel Core i3-N305.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i3-N305 | 55% |
Core i7-10750H | 53% | The number of this parameter shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Core i3-N305 is 3% better than Core i7-10750H. The data source is several popular tests. Detailed information can be found below.
Gaming performance Summary result of all game benchmarks.Core i3-N305 | 52% |
Core i7-10750H | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And of course, this is a server processor, on which no one will run games. Because this processor costs several tens of thousands of dollars. Therefore, if you think that the selected CPU has a small game result, look at the FPS that it produces in real games in the summary table below. List of less popular games in which processors were compared: DOTA 2A, Half-Life: Alyx, NBA 2K20, Resident Evil 7 Biohazard, Shadow of the Tomb Raider, Horizon Zero Dawn, Monster Hunter World, Forza Horizon 4, Ghostrunner, Microsoft Flight Simulator, Hitman 3, Counter-Strike: Global Offensive (CS GO), Metro Exodus, League of Legends (LOL), Battlefield V, PlayerUnknown's Battlegrounds (PUBG), Control, The Witcher 3: Wild Hunt.
Gaming benchmarkFortnite | 93.1 | 94.5 | Valorant | 105.8 | 107.4 | Cyberpunk 2077 | 59.3 | 60.2 | Apex Legends | 99.5 | 101.0 | Call of Duty Warzone | 79.4 | 80.6 | Overwatch | 85.7 | 87.0 | Red Dead Redemption 2 | 73.0 | 74.1 | DOOM Eternal | 52.9 | 53.7 | Warzone | 82.5 | 83.8 | Assassin's Creed | 88.9 | 90.2 | Valheim | 87.8 | 89.2 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparing not only were the equipped with different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 2K, FullHD or 4K. So the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
Core i3-N305 | 501% |
Core i7-10750H | 93% | To make a finishing decision on which processor is better, you should also consider the generation of its core. It is clear that the newer the generation, the better the performance of the processor in games and benchmarks, as well as its energy efficiency. In this case the Core i3-N305 is more energy efficient than the Core i7-10750H as it consumes less power: 7W vs. 45W. Power consumption is especially important for laptops. Also, when choosing a processor cooling system, you must know its TDP. It is necessary to calculate so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksIf you plan to use the processor not only for gaming, but also for programming, video rendering or video editing, machine learning, streaming, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, the processor turns on all cores and threads that it has to the maximum to achieve maximum performance. You will learn this data from the benchmark tables below. Before you take into account the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that use only one core to work, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i3-N305 |
Intel Core i7-10750H | Cinbench 15 Single-core | 225 | 204 | Cinbench 15 Multi-core | 1627 | 1216 | Cinbench 20 Single-core | 535 | 484 | Cinbench 20 Multi-core | 3691 | 2732 | Cinbench 23 Single-core | 1250 | 1174 | Cinbench 23 Multi-core | 12158 | 7314 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i3-N305 |
Intel Core i7-10750H | Single-Core | 2918 | 2718 | Multi-Core | 17887 | 12654 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i3-N305 |
Intel Core i7-10750H | Single-Core | 1054 | 1257 | Multi-Core | 5026 | 6398 |
Comparison of specifications
In the specification comparison table, the most useful will be the the possibility of overclocking it and release date of the processor. The later the processor is released, the longer it will last you. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. If the processor can be overclocked, increasing its performance, then it will still be able to produce maximum FPS even in new games. It turns out that there is no longer a need to buy a new CPU to enjoy the games any longer. The savings are obvious!
| Intel Core i3-N305 |
Intel Core i7-10750H | Announcement date | January 26, 2023 | January 01, 2020 | Type | Laptop | Laptop | Socket | FCBGA1264 | FCBGA1440 | Core name | Alder Lake-N | Comet Lake | Architecture | x86 | x86 | Generation | 13 | 10 | Turbo Frequency | 3.8 MHz | 5 MHz | Frequency | 1.8 MHz | 2.6 MHz | Cores | 8 | 6 | Threads | 8 | 12 | Bus rate | 8 GT/s | 8 GT/s | Bit | 64 | 64 | Lithography | 7 nm | 14 nm | Transistors count | 9800 millions | 6800 millions | Power consumption (TDP) | 7 W | 45 W | Memory type | DDR4 3200 MT/s DDR5 4800 MT/s LPDDR5 4800 MT/s | DDR4-2933 | Max. Memory | 16 Gb | 128 Gb | Memory Frequency | | | Memory bandwidth | 45.8 GB/s | 45.8 GB/s | L1 cache | 384KB | | L2 cache | 2MB | | L3 cache | 6 MB | 12 MB | Overclocking | No | No | Supports ECC | No | No | Part number | Expansion Options
| | In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Core i7-10750H is 30% better than Core i3-N305 in terms of CPU frequency. Another difference is that Core i3-N305 has 2 more core than Core i7-10750H. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i3-N305 is better: 17
The number of parameters for which Intel Core i7-10750H is better: 17 Although it should be realized that all the figures in the text above do not mean that taking them into account you should fully trust a simple comparison of these numbers. Be sure to watch the video tests and read the opinion of of people who bought Intel Core i3-N305 and Intel Core i7-10750H before making a decision which processor to buy for gaming and which not.
Intel Core i3-N305 Processor Comparisons • Vs Ryzen 5 PRO 5650U • Vs Core i9-10885H • Vs Core i3-1215UL • Vs Ryzen 7 1800X • Vs Ryzen 5 4600GE • Vs Ryzen 5 PRO 4650GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 4400G • Vs Core i9-10900TE • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i5-1230U • Vs Core i9-10900T • Vs Ryzen 7 PRO 2700X • Vs Ryzen Threadripper 1900X • Vs Core i5-1240U • Vs Core i5-1235U • Vs Core i7-11800H • Vs Core i9-9900 • Vs Core i7-6950X • Vs Core i7-10700F • Vs Core i7-7820X • Vs Core i5-1245U • Vs Core i7-1250U • Vs Ryzen 7 4800U • Vs Core i5-11400T • Vs Core i5-1235UL • Vs Ryzen 7 2700X • Vs Core i5-1245UE • Vs Core i9-10900E • Vs Core i7-10870H • Vs Core i7-10875H • Vs Ryzen 3 PRO 5475U • Vs Core i3-1215U • Vs Core i3-1215UE • Vs Ryzen 7 PRO 1700X • Vs Ryzen 7 2700 • Vs Ryzen 7 PRO 4750U • Vs Ryzen 5 5600HS • Vs Core i3-1210U • Vs Ryzen 7 1700X • Vs Xeon W-11855M • Vs Core i9-10880H • Vs Ryzen 5 5625U • Vs Core i9-9980HK • Vs Core i5-11320H • Vs Ryzen 7 PRO 2700 • Vs Ryzen 5 4600H • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4400GE • Vs Core i7-9700KF • Vs Core i7-8086K • Vs Ryzen 5 5600U • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Ryzen 7 2700E • Vs Core i7-9700K • Vs Pentium 8505 • Vs Ryzen 7 PRO 1700 • Vs Ryzen 5 4600HS • Vs Ryzen 9 4900U • Vs Ryzen 7 5700U • Vs Ryzen 5 PRO 4500U • Vs Core i7-1265U • Vs Ryzen 5 4600U • Vs Ryzen 3 PRO 4450U • Vs Ryzen 7 5800U • Vs Core i7-11850H • Vs Ryzen 7 5825U • Vs Core i5-1155G7 • Vs Core i7-1255U • Vs Ryzen 5 5600H • Vs Core i7-1260U • Vs Ryzen 3 5425U • Vs Core i7-11390H • Vs Ryzen 5 5500U • Vs Core i5-11300H • Vs Core i5-11260H • Vs Ryzen 9 5900HS • Vs Ryzen 7 4800H • Vs Core i5-1240P • Vs Core i3-12100 • Vs Core i5-12450H • Vs Celeron 7300 • Vs Core i7-10850H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 7 PRO 5875U • Vs Ryzen 5 4500U • Vs Core i5-1250P • Vs Core i5-11400H • Vs Pentium 8500 • Vs Core i3-12100F • Vs Core i7-11370H • Vs Ryzen 9 4900H • Vs Core i3-1220P • Vs Ryzen 7 4700U • Vs Ryzen 3 5400U • Vs Ryzen 7 5800 • Vs Core i5-12500H • Vs Core i7-1280P • Vs Ryzen 7 4800HS • Vs Celeron 7305 • Vs Core i5-11500H • Vs Ryzen 5 PRO 5675U • Vs Core i7-1260P • Vs Ryzen 9 4900HS • Vs Core i7-1270P • Vs Core i5-12450HX • Vs Ryzen 9 5980HS • Vs Ryzen 5 3450U • Vs Ryzen 7 5800HS • Vs Ryzen 5 3500C • Vs Ryzen 5 3500U • Vs Core i5-12600HX • Vs Ryzen 7 6800U • Vs Ryzen 5 6600U • Vs Core i7-1160G7 • Vs Core i7-1185G7 • Vs Ryzen 3 3350U • Vs Ryzen 9 5900HX • Vs Ryzen 7 3700C • Vs Ryzen 7 6800HS • Vs Core i7-1165G7 • Vs Ryzen 5 3580U • Vs Ryzen 3 5300U • Vs Core i5-1140G7 • Vs Core i7-11375H • Vs Ryzen 7 6800H • Vs Ryzen 5 3550H • Vs Core i7-1195G7 • Vs Ryzen 5 6600H • Vs Core i7-1180G7 • Vs Ryzen 5 6600HS • Vs Core i5-1145G7 • Vs Ryzen 7 5800H • Vs Core i3-N300 • Vs Core i7-1360P • Vs Core i5-1340P • Vs Core i5-1335U • Vs Core i3-1305U • Vs Core i7-13620H • Vs Core i7-13650HX • Vs Core i7-13800H • Vs Core i7-13850HX • Vs Core i5-13600HX • Vs Core i5-1345U • Vs Core i5-13505H • Vs Apple M2 • Vs Core i5-1135G7 • Vs Core i5-13500HX • Vs Core i7-12650H • Vs Core i5-13420H • Vs Core i7-12700H • Vs Apple M1 • Vs Core i5-1350P • Vs Core i7-13705H • Vs Core i9-13900H • Vs Core i3-1125G4 • Vs Core i9-13900HK • Vs Core i5-1334U • Vs Core i3-1120G4 • Vs Core i5-13500H • Vs Core i7-1365U • Vs Core i7-13700H • Vs Core i7-1068NG7 • Vs Core i5-13450HX • Vs Core i5-13600H • Vs Core i7-1065G7 • Vs Core i5-12600H • Vs Core i7-1355U • Vs Apple M1 Pro • Vs Core i3-1315U • Vs Core i7-1370P • Vs Ryzen 9 7940HS • Vs Ryzen 5 7640HS • Vs Ryzen 7 7735HS • Vs Ryzen 5 7535HS • Vs Ryzen 7 7736U • Vs Ryzen 7 7735U • Vs Ryzen 5 7535U • Vs Ryzen 3 7335U • Vs Ryzen 7 7730U • Vs Ryzen 3 7330U • Vs Ryzen 5 7520U • Vs Ryzen 3 7320U • Vs Ryzen 5 5560U • Vs Ryzen 7 PRO 6860Z
Intel Core i7-10750H Processor Comparisons • Vs Ryzen 9 5900X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-8700K • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 2600 • Vs Ryzen 5 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-7700HQ • Vs Core i7-4790K • Vs Core i9-10850K • Vs Ryzen 5 2600X • Vs Core i7-3770 • Vs Core i7-6700K • Vs Ryzen 5 1600 • Vs Ryzen 5 3500U • Vs Core i5-9400F • Vs Core i7-8700 • Vs Ryzen 5 3400G • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-4790 • Vs Core i7-7700K • Vs Core i7-6700HQ • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-10210U • Vs Core i5-9600K • Vs Core i7-4770 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Core i7-10510U • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Core i7-4770K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Core i9-9960X • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i3-10300T • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i3-10305 • Vs Core i3-10105 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-1130G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10880H • Vs Core i5-10600KF • Vs Core i7-9700KF • Vs Core i7-8086K • Vs Core i9-9900T • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-10500T • Vs Core i5-10400T • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Core i7-1068NG7 • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700T • Vs Core i5-9600KF • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i7-6850K • Vs Core i3-N300 • Vs Core i5-1340P • Vs Core i5-1334U • Vs Core i7-13650HX • Vs Core i7-13705H • Vs Core i7-13800H • Vs Core i7-13850HX • Vs Core i9-13900H • Vs Core i5-8350U • Vs Core i7-8650U • Vs Ryzen 7 3750H • Vs Core i7-6500U • Vs Ryzen 5 5625C • Vs Ryzen 7 5825C • Vs Ryzen 3 5425C • Vs Ryzen 7 3700C • Vs Ryzen 5 3500C • Vs Ryzen 7 7745HX • Vs Ryzen 5 7640HS • Vs Ryzen 7 7735U • Vs Ryzen 3 7320U
| |
|