|
Intel Core i3-N300 vs AMD Ryzen 5 2600X |
|
Processor comparisons 29-09-2022 Let's say you can't decide which CPU to buy, you can make a choice after reading the detailed tests Intel Core i3-N300 vs AMD Ryzen 5 2600X and decide which is better for games or simple use for video editing, programming, rendering, machine learning, streaming. Here is all information from real video editing and streaming tests or many benchmarks. A step-by-step analysis of all the specifications, to make it easier to read, is made by the table. From the video comparison, you can get the results of parallel examination in synthetic type tests like PassMark, DaVinci Resolve Studio, AIDA64, Dolphin Emulator, WPrime, Furmark, Handbrake, RealBench, Blender, UserBenchmark, VeraCrypt, Prime95, Blender, Cinebench 23 (20, 15), MATLAB, SuperPi, World of Tanks enCore Benchmark, GeekBench 6, 5.2, 3DMark, 7zip, PCMark 10, Gears 5. Gaming performance of CPUs in: - Fallout 76
- Watch Dogs Legion
- Halo Infinite
- Cyberpunk 2077
- Valheim
- Red Dead Redemption 2
- Apex Legends
- Grand Theft Auto V
- Call of Duty: Modern Warfare and Warzone
- World of Warcraft: Shadowlands
- Assassin's Creed Valhalla
- Valorant
- DOOM: Eternal
- Borderlands 3
- Last Man Standing
- Overwatch
- Rainbow Six Siege
- Fortnite
- Death Stranding
After reading the results of parallel benchmarks and videos, you already be able to know which CPU is better to buy for gaming AMD Ryzen 5 2600X or Intel Core i3-N300.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i3-N300 | 54% |
Ryzen 5 2600X | 54% |
Gaming performance Summary result of all game benchmarks.Core i3-N300 | 52% |
Ryzen 5 2600X | 53% | For the maximum in this test, the results of the most powerful processor in the site database are taken. And it is clear that this is a server processor, on which no one will run games. Because this processor costs several tens of thousands of dollars. Therefore, if you think that the selected CPU has a small game result, look at the FPS that it produces in real games in the summary table below. List of other games in which CPU comparisons were performed: NBA 2K20, League of Legends (LOL), Forza Horizon 4, Ghostrunner, Resident Evil 7 Biohazard, Monster Hunter World, DOTA 2A, Battlefield V, PlayerUnknown's Battlegrounds (PUBG), Metro Exodus, Half-Life: Alyx, Horizon Zero Dawn, The Witcher 3: Wild Hunt, Shadow of the Tomb Raider, Microsoft Flight Simulator, Control, Hitman 3, Counter-Strike: Global Offensive (CS GO).
Gaming benchmarkFortnite | 92.1 | 94.6 | Valorant | 104.7 | 107.5 | Cyberpunk 2077 | 58.6 | 60.2 | Apex Legends | 98.4 | 101.1 | Call of Duty Warzone | 78.5 | 80.6 | Overwatch | 84.8 | 87.1 | Red Dead Redemption 2 | 72.2 | 74.2 | DOOM Eternal | 52.4 | 53.8 | Warzone | 81.7 | 83.9 | Assassin's Creed | 88.0 | 90.3 | Valheim | 86.9 | 89.3 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers that were in the comparisons not only did they have different video cards and different amounts of RAM. But users also tested them at different screen resolutions: 4K, 2K or FullHD. So the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Core i3-N300 | 498% |
Ryzen 5 2600X | 39% | To make a final decision on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Core i3-N300 is more energy efficient than the Ryzen 5 2600X since it has less power consumption: 7W vs. 95W. Power consumption is particularly important for laptops. Also, when choosing a processor cooling system, it will be useful to know its TDP. You need to buy a cooler that has the TDP data specified in the specification was greater than the TDP of the compared processor.
Software benchmarksLet's say you plan to use the processor not only for gaming, but also for video rendering or video editing, machine learning, programming, streaming, then the main parameter for you is its performance in multi-threaded mode. In this mode, the CPU uses all cores and threads that it has to the maximum to reach maximum performance. You will learn this data from the benchmark tables below. Before using the data from these tests, be sure to find out whether the software that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i3-N300 |
AMD Ryzen 5 2600X | Cinbench 15 Single-core | 201 | 176 | Cinbench 15 Multi-core | 1403 | 1380 | Cinbench 20 Single-core | 467 | 421 | Cinbench 20 Multi-core | 3172 | 3048 | Cinbench 23 Single-core | 1079 | 1074 | Cinbench 23 Multi-core | 10430 | 7514 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i3-N300 |
AMD Ryzen 5 2600X | Single-Core | 2510 | 2438 | Multi-Core | 15340 | 14033 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i3-N300 |
AMD Ryzen 5 2600X | Single-Core | 1047 | 1127 | Multi-Core | 4058 | 6497 |
Comparison of specifications
In the specification comparison table, the most useful will be the the possibility of overclocking it and release date of the processor. The newer the processor, the longer it will last in your computer. And the easier it will be to upgrade the system in the future. The same can be said about overclocking. If the processor can be overclocked, thereby increasing its performance, then it will continue to maintain maximum FPS even in new games. The economy are obvious! Accordingly, there is no longer a need to buy a new CPU to enjoy the games any longer.
| Intel Core i3-N300 |
AMD Ryzen 5 2600X | Announcement date | January 25, 2023 | April 19, 2018 | Type | Laptop | Desktop | Socket | FCBGA1264 | AM4 | Core name | Alder Lake-N | Pinnacle Ridge | Architecture | x86 | Zen | Generation | 13 | 2 | Turbo Frequency | 3.8 MHz | 4.2 MHz | Frequency | 1.74 MHz | 3.6 MHz | Cores | 8 | 6 | Threads | 8 | 12 | Bus rate | 8 GT/s | | Bit | 64 | 64 | Lithography | 7 nm | 12 nm | Transistors count | 9800 millions | 3600 millions | Power consumption (TDP) | 7 W | 95 W | Memory type | DDR4 3200 MT/s DDR5 4800 MT/s LPDDR5 4800 MT/s | DDR4 | Max. Memory | 16 Gb | | Memory Frequency | | 2933 | Memory bandwidth | 45.8 GB/s | | L1 cache | 384KB | 576KB | L2 cache | 2MB | 3MB | L3 cache | 6 MB | 16MB | Overclocking | No | Yes | Supports ECC | No | No | Part number | Expansion Options
| YD260XBCM6IAF YD260XBCAFBOX YD260XBCAFMPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 2600X is 51% better than Core i3-N300 in terms of CPU frequency. Another difference is that Core i3-N300 has 2 more core than Ryzen 5 2600X. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i3-N300 is better: 18
The number of parameters for which AMD Ryzen 5 2600X is better: 20 Although it should be understood that the summary data in the table above do not mean that taking them into account you should totally trust a simple comparison of these figures. Be sure to watch benchmarks video and read the opinion of of people who bought Intel Core i3-N300 and AMD Ryzen 5 2600X before making a choice which of the CPUs to buy for gaming.
Intel Core i3-N300 Processor Comparisons • Vs Core i9-10880H • Vs Xeon W-11855M • Vs Ryzen 7 1700X • Vs Core i3-1210U • Vs Ryzen 5 5600HS • Vs Ryzen 7 PRO 4750U • Vs Ryzen 7 2700 • Vs Ryzen 7 PRO 1700X • Vs Core i3-1215UE • Vs Core i3-1215U • Vs Ryzen 3 PRO 5475U • Vs Core i7-10875H • Vs Core i7-10870H • Vs Core i3-N305 • Vs Ryzen 5 PRO 5650U • Vs Core i9-10885H • Vs Core i3-1215UL • Vs Ryzen 7 1800X • Vs Ryzen 5 4600GE • Vs Ryzen 5 PRO 4650GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 4400G • Vs Core i9-10900TE • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i5-1230U • Vs Core i9-10900T • Vs Ryzen 7 PRO 2700X • Vs Ryzen Threadripper 1900X • Vs Core i5-1240U • Vs Ryzen 5 5625U • Vs Core i9-9980HK • Vs Core i5-11320H • Vs Ryzen 7 PRO 2700 • Vs Ryzen 5 4600H • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4400GE • Vs Core i7-9700KF • Vs Core i7-8086K • Vs Ryzen 5 5600U • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Ryzen 7 2700E • Vs Core i7-9700K • Vs Pentium 8505 • Vs Ryzen 7 PRO 1700 • Vs Ryzen 5 4600HS • Vs Ryzen 5 5500U • Vs Xeon W-2235 • Vs Pentium 8500 • Vs Core i9-9880H • Vs Core i5-11260H • Vs Core i5-10600 • Vs Core i7-8700K • Vs Core i9-9900T • Vs Core i7-6900K • Vs Ryzen 5 4600U • Vs Core i7-9700F • Vs Ryzen 7 4700U • Vs Ryzen 3 5300U • Vs Celeron 7305 • Vs Ryzen 7 5825U • Vs Core i5-1140G7 • Vs Ryzen 7 3700C • Vs Ryzen 5 3500C • Vs Ryzen 7 PRO 5875U • Vs Ryzen 9 4900H • Vs Ryzen 3 3350U • Vs Ryzen 5 5600H • Vs Core i5-1250P • Vs Core i5-1155G7 • Vs Ryzen 5 3450U • Vs Core i7-11800H • Vs Ryzen 5 PRO 4500U • Vs Core i7-11390H • Vs Ryzen 7 5800 • Vs Core i5-1245U • Vs Ryzen 7 4800H • Vs Ryzen 5 3580U • Vs Core i7-10750H • Vs Ryzen 7 6800U • Vs Core i7-1185G7 • Vs Ryzen 7 5800H • Vs Ryzen 5 4500U • Vs Core i7-1160G7 • Vs Ryzen 5 PRO 5675U • Vs Core i5-11400H • Vs Core i7-1195G7 • Vs Ryzen 5 3500U • Vs Ryzen 9 4900HS • Vs Core i5-1145G7 • Vs Ryzen 3 5425U • Vs Core i5-1235U • Vs Ryzen 5 3550H • Vs Core i7-11375H • Vs Ryzen 9 4900U • Vs Celeron 7300 • Vs Core i7-1250U • Vs Core i7-1260U • Vs Core i5-1240P • Vs Core i7-11370H • Vs Ryzen 3 5400U • Vs Ryzen 7 4800HS • Vs Core i5-11500H • Vs Ryzen 7 5700U • Vs Core i5-11300H • Vs Ryzen 9 5900HS • Vs Core i7-1265U • Vs Ryzen 7 5800U • Vs Ryzen 7 5800HS • Vs Ryzen 7 4800U • Vs Core i7-1255U • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 6600HS • Vs Core i3-1220P • Vs Ryzen 3 PRO 4450U • Vs Ryzen 5 6600U • Vs Core i7-10850H • Vs Core i7-1360P • Vs Core i5-1340P • Vs Core i5-1335U • Vs Core i5-1334U • Vs Core i7-1355U • Vs Core i7-1365U • Vs Core i3-1305U • Vs Core i7-1370P • Vs Core i7-13650HX • Vs Core i7-13705H • Vs Core i5-1350P • Vs Core i7-13700H • Vs Core i7-13620H • Vs Apple M2 • Vs Core i7-1270P • Vs Apple M1 Pro • Vs Core i5-12450HX • Vs Core i7-1260P • Vs Core i5-1345U • Vs Core i3-1315U • Vs Core i7-1065G7 • Vs Core i5-12450H • Vs Core i5-1135G7 • Vs Core i7-11850H • Vs Core i5-13505H • Vs Core i5-12500H • Vs Core i7-1068NG7 • Vs Core i7-1180G7 • Vs Core i5-13420H • Vs Apple M1 • Vs Core i5-13500H • Vs Core i7-1165G7 • Vs Core i7-1280P • Vs Ryzen 7 7745HX • Vs Ryzen 9 7940HS • Vs Ryzen 5 7640HS • Vs Ryzen 7 7735U • Vs Ryzen 5 7535U • Vs Ryzen 3 7335U • Vs Ryzen 5 7530U • Vs Ryzen 3 7330U • Vs Ryzen 5 7520U • Vs Ryzen 3 7320U • Vs Ryzen 3 5125C • Vs Ryzen 5 5560U • Vs Ryzen 7 PRO 6860Z • Vs Ryzen 3 4300U
AMD Ryzen 5 2600X Processor Comparisons • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 2600 • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Core i7-6700K • Vs Ryzen 5 1600 • Vs Ryzen 5 3500U • Vs Core i5-9400F • Vs Core i7-8700 • Vs Ryzen 5 3400G • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-4790 • Vs Core i7-7700K • Vs Ryzen 9 5950X • Vs Ryzen 9 5900X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 5 3600X • Vs Core i7-8700K • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-9600K • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Ryzen Threadripper PRO 3955WX • Vs Xeon W-3175X • Vs Ryzen Threadripper PRO 3945WX • Vs Core i9-9960X • Vs Ryzen 9 5900 • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Apple M1X • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i7-11700K • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Core i9-7940X • Vs Core i9-7960X • Vs Ryzen Threadripper 1950X • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i9-9920X • Vs Ryzen Threadripper 2920X • Vs Ryzen 3 3300X • Vs Ryzen 9 5900HX • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs EPYC 7F32 • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Ryzen 5 PRO 3600 • Vs Core i7-9800X • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 5300G • Vs Core i9-10900TE • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Xeon W-11855M • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Core i3-1210U • Vs Core i3-1215U • Vs Ryzen 3 PRO 5475U • Vs Ryzen 5 5625U • Vs Core i9-9880H • Vs Core i9-9980HK • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i3-1215UE • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i5-13500HX • Vs Core i9-13900T • Vs Core i9-13900F • Vs Core i7-13700T • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 7900X3D • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Core i7-5820K • Vs Ryzen 9 5600X • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 5645 • Vs Ryzen 3 PRO 5350G • Vs Ryzen 5 PRO 4655G • Vs Core i5-13490F • Vs Ryzen 7 7800X3D • Vs Ryzen 3 PRO 4355G
| |
|