|
Intel Core i7-9800X vs AMD Ryzen 5 2600X |
|
Processor comparisons 24-03-2021 Let's say you are thinking about choosing a CPU, you will be able to make a choice by looking at the Intel Core i7-9800X vs AMD Ryzen 5 2600X tests and understand which is better for games or normal use for rendering, programming, streaming, video editing, machine learning. Here is useful information from many benchmarks or real video editing and streaming tests. A step-by-step analysis of all the specifications, to make it easier to understand, is summarized in the table. From the video comparison, you can get the results of joint testing in synthetic type tests such as Blender, Dolphin Emulator, DaVinci Resolve Studio, World of Tanks enCore Benchmark, PassMark, AIDA64, Prime95, SuperPi, GeekBench 6, 5.2, Blender, Furmark, 7zip, WPrime, 3DMark, VeraCrypt, RealBench, MATLAB, Gears 5, UserBenchmark, PCMark 10, Cinebench 23 (20, 15), Handbrake. And how good the processors are in games: - Fallout 76
- Cyberpunk 2077
- Valorant
- World of Warcraft: Shadowlands
- Valheim
- DOOM: Eternal
- Last Man Standing
- Grand Theft Auto V
- Halo Infinite
- Watch Dogs Legion
- Apex Legends
- Fortnite
- Borderlands 3
- Call of Duty: Warzone and Modern Warfare
- Death Stranding
- Rainbow Six Siege
- Red Dead Redemption 2
- Overwatch
- Assassin's Creed Valhalla
After reading the results of parallel benchmarks and videos, you already be able to understand which processor is better to buy for gaming AMD Ryzen 5 2600X or Intel Core i7-9800X.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i7-9800X | 55% |
Ryzen 5 2600X | 54% | This value shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Core i7-9800X is 1% better than Ryzen 5 2600X. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Core i7-9800X | 56% |
Ryzen 5 2600X | 53% | For the maximum in this test, the results of the most powerful processor in the site database are taken. And of course, this is a server processor, on which no one will run games. Because this processor costs several tens of thousands of dollars. And if it seems to you that the selected CPU has a small game result, look at the FPS that it produces in real games in the final table below. List of other games in which CPU comparisons were performed: Monster Hunter World, NBA 2K20, Battlefield V, Control, The Witcher 3: Wild Hunt, Ghostrunner, DOTA 2A, Hitman 3, Metro Exodus, PlayerUnknown's Battlegrounds (PUBG), Microsoft Flight Simulator, Forza Horizon 4, Half-Life: Alyx, League of Legends (LOL), Horizon Zero Dawn, Shadow of the Tomb Raider, Resident Evil 7 Biohazard, Counter-Strike: Global Offensive (CS GO).
Gaming benchmarkFortnite | 99.2 | 94.6 | Valorant | 112.7 | 107.5 | Cyberpunk 2077 | 63.1 | 60.2 | Apex Legends | 106.0 | 101.1 | Call of Duty Warzone | 84.5 | 80.6 | Overwatch | 91.3 | 87.1 | Red Dead Redemption 2 | 77.8 | 74.2 | DOOM Eternal | 56.4 | 53.8 | Warzone | 87.9 | 83.9 | Assassin's Creed | 94.7 | 90.3 | Valheim | 93.6 | 89.3 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparing not only were the equipped with different video cards and different amounts of RAM. But users also tested them at different screen resolutions: 2K, 4K or FullHD. So the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
Core i7-9800X | 28% |
Ryzen 5 2600X | 39% | To make a finishing choice on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 5 2600X is more energy efficient than the Core i7-9800X since it has less power consumption: 165W vs. 95W. Power consumption is especially important for laptops. And TDP should be taken into account when choosing a processor cooling system. It is necessary to calculate so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksLet's say you plan to use the processor not only for gaming, but also for machine learning, video rendering or video editing, streaming, programming, then the main parameter for you is its performance in multi-threaded mode. In this mode, the CPU turns on all threads and cores that it has to the maximum to achieve maximum efficiency. You will learn this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i7-9800X |
AMD Ryzen 5 2600X | Cinbench 15 Single-core | | 176 | Cinbench 15 Multi-core | | 1380 | Cinbench 20 Single-core | | 421 | Cinbench 20 Multi-core | | 3048 | Cinbench 23 Single-core | 1271 | 1074 | Cinbench 23 Multi-core | 13067 | 7514 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i7-9800X |
AMD Ryzen 5 2600X | Single-Core | 2664 | 2438 | Multi-Core | 18347 | 14033 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i7-9800X |
AMD Ryzen 5 2600X | Single-Core | 1393 | 1127 | Multi-Core | 10972 | 6497 |
Comparison of specifications
In the specification comparison table, the most useful will be the the possibility of overclocking it and release date of the processor. The later the processor is released, the longer it will last you. And the easier it will be to upgrade the system in the future. The same can be said about overclocking. When the processor can be overclocked, thereby increasing its performance, then it will continue to maintain maximum FPS even in the newest games. The economy are obvious! Accordingly, you do not need to buy a new CPU to enjoy the games any longer.
| Intel Core i7-9800X |
AMD Ryzen 5 2600X | Announcement date | October 01, 2018 | April 19, 2018 | Type | Desktop | Desktop | Socket | FCLGA2066 | AM4 | Core name | Skylake | Pinnacle Ridge | Architecture | x86 | Zen | Generation | 9 | 2 | Turbo Frequency | 4.4 MHz | 4.2 MHz | Frequency | 3.8 MHz | 3.6 MHz | Cores | 8 | 6 | Threads | 16 | 12 | Bus rate | 8 GT/s | | Bit | 64 | 64 | Lithography | 14 nm | 12 nm | Transistors count | 5600 millions | 3600 millions | Power consumption (TDP) | 165 W | 95 W | Memory type | DDR4-2666 | DDR4 | Max. Memory | 128 Gb | | Memory Frequency | | 2933 | Memory bandwidth | 85 GB/s | | L1 cache | | 576KB | L2 cache | | 3MB | L3 cache | 16.5 MB | 16MB | Overclocking | No | Yes | Supports ECC | No | No | Part number | | YD260XBCM6IAF YD260XBCAFBOX YD260XBCAFMPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Core i7-9800X is 5% better than Ryzen 5 2600X in terms of CPU frequency. Another difference is that Core i7-9800X has 2 more core than Ryzen 5 2600X. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i7-9800X is better: 27
The number of parameters for which AMD Ryzen 5 2600X is better: 11 Although it should be realized that the summary data in the text above do not mean that you should be guided entirely by them and trust a simple comparison of these figures. Be sure to watch benchmarks video and read the reviews of of people who bought Intel Core i7-9800X and AMD Ryzen 5 2600X before deciding which of the processors to buy for gaming.
Intel Core i7-9800X Processor Comparisons • Vs Ryzen 7 PRO 4750G • Vs Ryzen 7 PRO 4700G • Vs Core i9-9900KF • Vs Ryzen 5 PRO 3600 • Vs Ryzen 7 4700G • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Xeon E5-2680R v4 • Vs Core i5-11400F • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Core i5-11400 • Vs Ryzen 7 4800HS • Vs Ryzen 7 4800H • Vs Ryzen 9 4900H • Vs Core i5-11500 • Vs Core i7-7900X • Vs Core i7-10700K • Vs Core i9-9900KS • Vs Core i7-10700KF • Vs Core i5-11600 • Vs Ryzen 9 4900HS • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600KF • Vs Core i9-9820X • Vs Core i5-11600K • Vs Ryzen 7 4700GE • Vs Core i9-10900F • Vs Core i9-10900 • Vs Ryzen 7 5700U • Vs Ryzen 7 Extreme Edition • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i7-10700 • Vs Ryzen 5 5600H • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i5-11400T • Vs Core i7-10700F • Vs Core i7-11800H • Vs Core i9-10900T • Vs Core i7-10870H • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 5600HS • Vs Ryzen 5 4600H • Vs Ryzen 5 PRO 4400GE • Vs Ryzen 5 5600U • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 4600HS • Vs Ryzen 5 5500U • Vs Xeon W-2235 • Vs Core i5-10600 • Vs Core i7-8700K • Vs Ryzen 5 4600U • Vs Ryzen 7 4700U • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Ryzen 5 PRO 4650GE • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i9-10900TE • Vs Core i9-10900E • Vs Core i5-1155G7 • Vs Core i5-11500B • Vs Core i5-11400H • Vs Core i5-11500H • Vs Core i7-12700H • Vs Core i5-1230U • Vs Core i5-1240U • Vs Core i7-1250U • Vs Core i5-1235U • Vs Core i5-1245U • Vs Core i7-1255U • Vs Core i7-1260U • Vs Core i7-1265U • Vs Core i3-1220P • Vs Core i5-1240P • Vs Core i3-12100 • Vs Core i3-12100E • Vs Core i3-12100F • Vs Core i3-12100T • Vs Core i3-12100TE • Vs Core i3-12300T • Vs Ryzen 7 PRO 5875U • Vs Ryzen 5 PRO 5675U • Vs Ryzen 5 PRO 5650GE • Vs Core i7-1265UE • Vs Core i7-1265UL • Vs Core i7-1255UL • Vs Core i5-1235UL • Vs Core i5-1245UL • Vs Core i5-1245UE • Vs Core i3-1220PE • Vs Ryzen 7 7700X • Vs Ryzen 5 5600 • Vs Core i9-13900T • Vs Core i7-13700F • Vs Core i5-13600T • Vs Core i5-13500T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 5 5500 • Vs Ryzen 3 PRO 5350GE
AMD Ryzen 5 2600X Processor Comparisons • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 2600 • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Core i7-6700K • Vs Ryzen 5 1600 • Vs Ryzen 5 3500U • Vs Core i5-9400F • Vs Core i7-8700 • Vs Ryzen 5 3400G • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-4790 • Vs Core i7-7700K • Vs Ryzen 9 5950X • Vs Ryzen 9 5900X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 5 3600X • Vs Core i7-8700K • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-9600K • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Ryzen Threadripper PRO 3955WX • Vs Xeon W-3175X • Vs Ryzen Threadripper PRO 3945WX • Vs Core i9-9960X • Vs Ryzen 9 5900 • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Apple M1X • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i7-11700K • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Core i9-7940X • Vs Core i9-7960X • Vs Ryzen Threadripper 1950X • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i9-9920X • Vs Ryzen Threadripper 2920X • Vs Ryzen 3 3300X • Vs Ryzen 9 5900HX • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs EPYC 7F32 • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Ryzen 5 PRO 3600 • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 5300G • Vs Core i9-10900TE • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Xeon W-11855M • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Core i3-1210U • Vs Core i3-1215U • Vs Ryzen 3 PRO 5475U • Vs Ryzen 5 5625U • Vs Core i9-9880H • Vs Core i9-9980HK • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i3-1215UE • Vs Core i3-N300 • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i5-13500HX • Vs Core i9-13900T • Vs Core i9-13900F • Vs Core i7-13700T • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 7900X3D • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Core i7-5820K • Vs Ryzen 9 5600X • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 5645 • Vs Ryzen 3 PRO 5350G • Vs Ryzen 5 PRO 4655G • Vs Core i5-13490F • Vs Ryzen 7 7800X3D • Vs Ryzen 3 PRO 4355G
| |
|