 |
Intel Xeon W-2235 vs Intel Core i5-10400 |
|
Processor comparisons 17-03-2021 You may have difficulties with the choice of a processor, you will solve them by reading the detailed tests Intel Xeon W-2235 vs Intel Core i5-10400 and see which is better for games or normal use for streaming, programming, rendering, video editing, machine learning. Here you can find useful information from different benchmarks or real streaming and video editing tests. A careful review of all the specifications, to make it easier to understand, is made by the table. From the comparison video, you can get the results of parallel examination in synthetic type tests such as 7zip, World of Tanks enCore Benchmark, SuperPi, RealBench, Blender, AIDA64, Gears 5, MATLAB, Dolphin Emulator, Furmark, PCMark 10, Prime95, UserBenchmark, Handbrake, VeraCrypt, Cinebench 23 (20, 15), WPrime, DaVinci Resolve Studio, Blender, PassMark, 3DMark, GeekBench 6, 5.2. And how good the CPUs are in games: - Assassin's Creed Valhalla
- Overwatch
- Fallout 76
- Death Stranding
- Last Man Standing
- Call of Duty: Warzone and Modern Warfare
- Rainbow Six Siege
- Valorant
- Grand Theft Auto V
- Watch Dogs Legion
- Halo Infinite
- Fortnite
- Red Dead Redemption 2
- DOOM: Eternal
- Cyberpunk 2077
- Borderlands 3
- Valheim
- World of Warcraft: Shadowlands
- Apex Legends
After looking at the data of joint benchmarks and videos, you already be able to understand which processor is better to buy for gaming Intel Core i5-10400 or Intel Xeon W-2235.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Xeon W-2235 | 54% |
Core i5-10400 | 53% | This parameter shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Xeon W-2235 is 1% better than Core i5-10400. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Xeon W-2235 | 53% |
Core i5-10400 | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor at the moment. And of course, this is a server processor, on which no one will run games. Because the cost of this processor reaches several tens of thousands of dollars. And if it seems to you that the selected CPU has a low game result, just look at the FPS that it produces in real games in the final table below. List of other games in which processors were compared: Microsoft Flight Simulator, Ghostrunner, Half-Life: Alyx, NBA 2K20, Shadow of the Tomb Raider, Control, Resident Evil 7 Biohazard, Metro Exodus, PlayerUnknown's Battlegrounds (PUBG), The Witcher 3: Wild Hunt, Counter-Strike: Global Offensive (CS GO), Hitman 3, DOTA 2A, Horizon Zero Dawn, League of Legends (LOL), Battlefield V, Monster Hunter World, Forza Horizon 4.
Gaming benchmarkFortnite | 94.9 | 94.8 | Valorant | 107.9 | 107.7 | Cyberpunk 2077 | 60.4 | 60.3 | Apex Legends | 101.4 | 101.2 | Call of Duty Warzone | 80.9 | 80.8 | Overwatch | 87.4 | 87.2 | Red Dead Redemption 2 | 74.4 | 74.3 | DOOM Eternal | 53.9 | 53.9 | Warzone | 84.1 | 84.0 | Assassin's Creed | 90.6 | 90.5 | Valheim | 89.5 | 89.4 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparisons not only were the equipped with different video cards and different amounts of RAM. But users also tested them at different screen resolutions: 4K, 2K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
Xeon W-2235 | 31% |
Core i5-10400 | 63% | To make a finishing resolution on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Core i5-10400 is more energy efficient than the Xeon W-2235 as it consumes less power: 130W vs. 65W. Power consumption is particularly important for laptops. Also, when choosing a processor cooling system, it will be useful to know its TDP. You need to buy a cooler that has the TDP data specified in the specification was greater than the TDP of the compared processor.
Software benchmarksLet's say you want to use the processor not only for gaming, but also for machine learning, programming, streaming, video rendering or video editing, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, to achieve maximum performance, the processor uses all cores and threads that it has. You will learn this data from the benchmark tables below. Before you take into account the data from these tests, be sure to check whether the program you are going to use on your computer supports multi-threaded mode. Because there are still many programs that use only one core to run, and all the advantages of multi-core mode turns out to be unnecessary. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Xeon W-2235 |
Intel Core i5-10400 | Cinbench 15 Single-core | 206 | 190 | Cinbench 15 Multi-core | 1514 | 1341 | Cinbench 20 Single-core | 188 | 450 | Cinbench 20 Multi-core | 5853 | 3197 | Cinbench 23 Single-core | 502 | 1110 | Cinbench 23 Multi-core | 14141 | 7610 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Xeon W-2235 |
Intel Core i5-10400 | Single-Core | 2638 | 2626 | Multi-Core | 14394 | 12503 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Xeon W-2235 |
Intel Core i5-10400 | Single-Core | 1210 | 1245 | Multi-Core | 6788 | 6654 |
Comparison of specifications
In the specification comparison table, the most useful will be the release date of the processor and the possibility of overclocking it. The newer the processor, the longer it will last in your computer. And the easier it will be to upgrade the system later. The same can be said about overclocking. If the processor can be overclocked, increasing its performance, then it will still be able to produce maximum FPS in the newest games. The savings are obvious! Accordingly, there is no longer a need to buy a new CPU to enjoy the games any longer.
| Intel Xeon W-2235 |
Intel Core i5-10400 | Announcement date | April 01, 2020 | April 01, 2020 | Type | Server | Desktop | Socket | FCLGA2066 | FCLGA1200 | Core name | Cascade Lake | Comet Lake | Architecture | x86 | x86 | Generation | 3 | 10 | Turbo Frequency | 4.6 MHz | 4.3 MHz | Frequency | 3.8 MHz | 2.9 MHz | Cores | 6 | 6 | Threads | 12 | 12 | Bus rate | 8 GT/s | 8 GT/s | Bit | 64 | 64 | Lithography | 14 nm | 14 nm | Transistors count | 4130 millions | 4800 millions | Power consumption (TDP) | 130 W | 65 W | Memory type | DDR4 2933 | DDR4-2666 | Max. Memory | 1 Gb | 128 Gb | Memory Frequency | | | Memory bandwidth | 93.85 GB/s | 41.6 GB/s | L1 cache | | | L2 cache | | | L3 cache | 8.25 MB | 12 MB | Overclocking | No | Yes | Supports ECC | Yes | No | Part number | | | In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Xeon W-2235 is 23% better than Core i5-10400 in terms of CPU frequency. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Xeon W-2235 is better: 22
The number of parameters for which Intel Core i5-10400 is better: 8 Although it should be understood that all the data in the article above do not mean that taking them into account you should undividedly trust a simple comparison of these figures. Be sure to watch the video tests and read the reviews of of people who bought Intel Xeon W-2235 and Intel Core i5-10400 before deciding which processor to buy for gaming and which not.
Intel Xeon W-2235 Processor Comparisons • Vs Ryzen 5 4600HS • Vs Core i7-9700K • Vs Ryzen 7 1700 • Vs Core i5-10600K • Vs Ryzen 5 PRO 4400GE • Vs Ryzen 5 4600H • Vs Ryzen 7 2700 • Vs Core i7-10875H • Vs Core i7-10870H • Vs Core i7-10700F • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i7-10700 • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Xeon E5-2680R v4 • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600K • Vs Ryzen 9 4900U • Vs Ryzen 7 5800 • Vs Xeon Gold 6130T • Vs Ryzen 5 5600G • Vs Apple M1 • Vs Ryzen 5 5600X • Vs Ryzen 7 5800U • Vs Ryzen 5 2600X • Vs Core i5-10600 • Vs Core i7-8700K • Vs Ryzen 5 4600U • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Core i5-10500 • Vs Ryzen 5 2600 • Vs Core i7-10700T • Vs Core i7-8700 • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10750H • Vs Core i5-10400F • Vs Ryzen 5 1600 • Vs Ryzen 3 4300GE • Vs Ryzen 3 3100 • Vs Core i5-1145G7 • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Ryzen 3 PRO 4200GE • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i3-10320 • Vs Core i5-1135G7 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Ryzen 5 PRO 3600 • Vs Core i7-9800X • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 5300G • Vs Core i9-10900TE • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Xeon W-11855M • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Core i3-1210U • Vs Core i3-1215U • Vs Ryzen 3 PRO 5475U • Vs Ryzen 5 5625U • Vs Core i9-9880H • Vs Core i9-9980HK • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i3-1215UE • Vs Core i3-N300 • Vs EPYC 7F72 • Vs EPYC 7F52 • Vs EPYC 9654P • Vs EPYC 9654 • Vs EPYC 9634 • Vs EPYC 9554 • Vs EPYC 9554P • Vs EPYC 9534 • Vs EPYC 9124 • Vs EPYC 9224 • Vs EPYC 9174F • Vs EPYC 9254 • Vs EPYC 9274F • Vs EPYC 9334 • Vs EPYC 9354 • Vs EPYC 9354P • Vs EPYC 9374F • Vs EPYC 9454 • Vs EPYC 9454P • Vs EPYC 9474F • Vs EPYC 7232P • Vs EPYC 7402 • Vs EPYC 7252 • Vs EPYC 7262 • Vs EPYC 7352 • Vs EPYC 7532 • Vs EPYC 7542 • Vs EPYC 7552 • Vs EPYC 7642 • Vs EPYC 7662 • Vs EPYC 7702P • Vs EPYC 7742 • Vs EPYC 7713P • Vs EPYC 7H12 • Vs EPYC 72F3 • Vs EPYC 7313 • Vs EPYC 7313P • Vs EPYC 7343 • Vs EPYC 73F3 • Vs EPYC 7373X • Vs Xeon Gold 5415+ • Vs Xeon Gold 6434 • Vs EPYC 7473X • Vs Xeon Gold 6434H • Vs EPYC 7573X • Vs Xeon Bronze 3408U • Vs Xeon Silver 4410T • Vs Xeon Silver 4410Y • Vs EPYC 7763 • Vs EPYC 7773X • Vs Xeon Platinum 8444H • Vs Xeon Gold 5416S • Vs Xeon Gold 6416H • Vs Xeon Silver 4416+
Intel Core i5-10400 Processor Comparisons • Vs Core i5-10400F • Vs Core i7-10750H • Vs Core i7-8700 • Vs Ryzen 5 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Ryzen 5 2600X • Vs Ryzen 5 4600H • Vs Core i7-10700 • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Ryzen 5 1600 • Vs Core i7-9750H • Vs Core i7-8750H • Vs Core i7-7700K • Vs Core i5-9400F • Vs Ryzen 5 3400G • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Core i7-6700 • Vs Ryzen 5 3500U • Vs Core i7-4790 • Vs Core i7-7700HQ • Vs Core i7-6700HQ • Vs Core i7-3770 • Vs Ryzen 5 3600XT • Vs Core i5-10210U • Vs Core i5-9600K • Vs Core i7-4770 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Core i7-10510U • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Core i7-4770K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i3-10300T • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i3-10305 • Vs Core i3-10105 • Vs Core i3-10105F • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-1130G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10880H • Vs Core i5-10600KF • Vs Core i7-9700KF • Vs Core i7-8086K • Vs Core i9-9900T • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-10500T • Vs Ryzen 3 PRO 4450U • Vs Core i5-10400T • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Core i3-11100B • Vs Core i7-1068NG7 • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i7-9850H • Vs Core i7-9700T • Vs Core i7-8700T • Vs Core i5-9600KF • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i7-6850K • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 7900X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i5-6500T • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 4600GE • Vs Apple M1 Ultra • Vs Ryzen 7 7800X3D • Vs Ryzen 3 PRO 4355G • Vs Ryzen 3 PRO 4355GE
| |
|