|
Intel Xeon W-10855M vs AMD Ryzen 5 3500X |
|
Processor comparisons 27-07-2021 Let's say you are thinking about choosing a processor, you will be able to make a decision after reading the full tests Intel Xeon W-10855M vs AMD Ryzen 5 3500X and understand which is better for games or normal use for video editing, machine learning, programming, streaming, rendering. Here is useful information from real video editing and streaming tests or many benchmarks. A thorough analysis of all the specifications, to make it easier to read, is made by the table. From the video comparison, you can get the results of parallel examination in software tests such as Handbrake, PCMark 10, 7zip, Cinebench 23 (20, 15), GeekBench 6, 5.2, Furmark, UserBenchmark, DaVinci Resolve Studio, World of Tanks enCore Benchmark, Blender, SuperPi, WPrime, Prime95, MATLAB, PassMark, Blender, Gears 5, RealBench, AIDA64, Dolphin Emulator, 3DMark, VeraCrypt. Gaming performance of processors in: - Fallout 76
- Overwatch
- Halo Infinite
- Cyberpunk 2077
- Rainbow Six Siege
- Valorant
- Grand Theft Auto V
- DOOM: Eternal
- Death Stranding
- Call of Duty: Warzone and Modern Warfare
- Assassin's Creed Valhalla
- Valheim
- Red Dead Redemption 2
- Fortnite
- Watch Dogs Legion
- Apex Legends
- Borderlands 3
- Last Man Standing
- World of Warcraft: Shadowlands
After reading the results these benchmarks and videos, you already be able to understand which processor is better to buy for gaming AMD Ryzen 5 3500X or Intel Xeon W-10855M.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Xeon W-10855M | 54% |
Ryzen 5 3500X | 54% |
Gaming performance Summary result of all game benchmarks.Xeon W-10855M | 53% |
Ryzen 5 3500X | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor at the moment. And of course, this is a server processor, on which no one will run games. Because this processor costs several tens of thousands of dollars. And if it seems to you that the selected CPU has a small game result, look at the FPS that it produces in real games in the final table below. List of other games in which processors were compared: Battlefield V, Monster Hunter World, Forza Horizon 4, PlayerUnknown's Battlegrounds (PUBG), DOTA 2A, Shadow of the Tomb Raider, NBA 2K20, Metro Exodus, The Witcher 3: Wild Hunt, Ghostrunner, Microsoft Flight Simulator, Half-Life: Alyx, Counter-Strike: Global Offensive (CS GO), League of Legends (LOL), Resident Evil 7 Biohazard, Hitman 3, Horizon Zero Dawn, Control.
Gaming benchmarkFortnite | 95.0 | 94.1 | Valorant | 108.0 | 106.9 | Cyberpunk 2077 | 60.5 | 59.9 | Apex Legends | 101.5 | 100.5 | Call of Duty Warzone | 81.0 | 80.2 | Overwatch | 87.5 | 86.6 | Red Dead Redemption 2 | 74.5 | 73.8 | DOOM Eternal | 54.0 | 53.5 | Warzone | 84.2 | 83.4 | Assassin's Creed | 90.7 | 89.8 | Valheim | 89.6 | 88.7 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparisons not only were the equipped with different video cards and different amounts of RAM. But users also tested them at different screen resolutions: 4K, 2K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
Xeon W-10855M | 93% |
Ryzen 5 3500X | 65% | To make a final decision on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Xeon W-10855M is more energy efficient than the Ryzen 5 3500X since it has less power consumption: 45W vs. 65W. Power consumption is especially important for laptops. And TDP should be taken into account when choosing a processor cooling system. You need to buy a cooler that has the TDP data specified in the specification was greater than the TDP of the compared processor.
Software benchmarksLet's say you plan to use the processor not only for gaming, but also for programming, machine learning, video rendering or video editing, streaming, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, the CPU includes all threads and cores that it has to the maximum to reach maximum efficiency. You will find out this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the software that you are going to use on your computer can work in multi-threaded mode. Because there are still many programs that use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Xeon W-10855M |
AMD Ryzen 5 3500X | Cinbench 15 Single-core | 191 | 188 | Cinbench 15 Multi-core | 1407 | 1129 | Cinbench 20 Single-core | 175 | 464 | Cinbench 20 Multi-core | 5437 | 2652 | Cinbench 23 Single-core | 466 | 1126 | Cinbench 23 Multi-core | 13137 | 7797 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Xeon W-10855M |
AMD Ryzen 5 3500X | Single-Core | 2801 | 2562 | Multi-Core | 13372 | 13476 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Xeon W-10855M |
AMD Ryzen 5 3500X | Single-Core | 1264 | 1272 | Multi-Core | 6885 | 5963 |
Comparison of specifications
In the specification comparison table, the processor release date and overclocking capability will be the most helpful. The later the processor is released, the longer it will last in your computer. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. If the processor can be overclocked, increasing its performance, then it will continue to maintain maximum FPS in the newest games. Accordingly, there is no longer a need to buy a new CPU to enjoy the games any longer. The savings are obvious!
| Intel Xeon W-10855M |
AMD Ryzen 5 3500X | Announcement date | April 01, 2020 | September 24, 2019 | Type | Laptop, Server | Desktop | Socket | FCBGA1440 | AM4 | Core name | Comet Lake | Matisse | Architecture | x86 | Zen 2 | Generation | 4 | 3 | Turbo Frequency | 5.1 MHz | 4.1 MHz | Frequency | 2.8 MHz | 3.6 MHz | Cores | 6 | 6 | Threads | 12 | 6 | Bus rate | 8 GT/s | | Bit | 64 | 64 | Lithography | 14 nm | 7 nm | Transistors count | 2200 millions | 4200 millions | Power consumption (TDP) | 45 W | 65 W | Memory type | DDR4-2933 | DDR4 | Max. Memory | 128 Gb | | Memory Frequency | | 3200 | Memory bandwidth | 45.8 GB/s | | L1 cache | | 384KB | L2 cache | | 3MB | L3 cache | 12 MB | 32MB | Overclocking | No | Yes | Supports ECC | Yes | No | Part number | | 100-000000158 100-100000158CBX 100-100000158MPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 3500X is 22% better than Xeon W-10855M in terms of CPU frequency. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Xeon W-10855M is better: 26
The number of parameters for which AMD Ryzen 5 3500X is better: 12 However, it should be understood that all the number in the text above do not mean that you should be guided entirely by them and trust a simple comparison of these numbers. Better to watch the testing video and read the reviews of real owners of Intel Xeon W-10855M and AMD Ryzen 5 3500X before deciding which of the processors to buy for gaming.
Intel Xeon W-10855M Processor Comparisons • Vs Core i5-10500 • Vs Core i7-9700 • Vs Ryzen 5 2600E • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Core i7-9700F • Vs Ryzen 5 4600U • Vs Core i7-6900K • Vs Core i9-9900T • Vs Core i7-8700K • Vs Core i5-10600 • Vs Core i5-11260H • Vs Ryzen 5 2600X • Vs Xeon W-2235 • Vs Ryzen 5 5500U • Vs Ryzen 5 4600HS • Vs Ryzen 7 PRO 1700 • Vs Core i7-9700K • Vs Ryzen 7 2700E • Vs Ryzen 7 1700 • Vs Core i5-10600K • Vs Ryzen 5 5600U • Vs Core i7-8086K • Vs Core i7-9700KF • Vs Ryzen 5 PRO 4400GE • Vs Core i5-10600KF • Vs Ryzen 5 4600H • Vs Ryzen 7 PRO 2700 • Vs Core i5-11320H • Vs Ryzen 5 2600 • Vs Core i7-11390H • Vs Core i7-10700T • Vs Core i7-8700 • Vs Core i5-11300H • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4650U • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10850H • Vs Core i7-5960X • Vs Core i7-7800X • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Core i7-11375H • Vs Ryzen 5 1600 • Vs Core i5-10600T • Vs Core i7-11370H • Vs Ryzen 5 PRO 4500U • Vs Ryzen 3 4300GE • Vs Core i7-1195G7 • Vs Ryzen 3 3100 • Vs Core i5-1145G7 • Vs Ryzen 3 4300G • Vs Core i5-1140G7 • Vs Core i7-1185G7 • Vs Ryzen 3 PRO 4350GE • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X
AMD Ryzen 5 3500X Processor Comparisons • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Core i7-8700K • Vs Ryzen 5 2600X • Vs Ryzen 5 4600H • Vs Core i7-10700 • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Core i7-9750H • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i7-7700K • Vs Core i5-9400F • Vs Ryzen 5 3400G • Vs Core i5-8400 • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Core i7-6700 • Vs Core i5-9300H • Vs Ryzen 5 3500U • Vs Core i7-4790 • Vs Core i7-10510U • Vs Core i7-4770 • Vs Core i7-7700HQ • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Xeon W-3175X • Vs Core i9-9960X • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i9-13900T • Vs Core i9-13900F • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE
| |
|