|
AMD Ryzen 5 3500X vs Intel Core i7-4770 |
|
Processor comparisons 17-03-2021 For example you are thinking about choosing a CPU, you will be able to make a choice after reading the detailed tests AMD Ryzen 5 3500X vs Intel Core i7-4770 and decide which is better for games or normal use for streaming, video editing, programming, rendering, machine learning. Here you can find all information from real video editing and streaming tests or many benchmarks. A step-by-step analysis of all the specifications, so that it can be easier to read, is made by the table. From the video comparison, you can get the results of joint testing in synthetic type tests such as Blender, Prime95, Blender, PassMark, Dolphin Emulator, Gears 5, MATLAB, Furmark, GeekBench 6, 5.2, Handbrake, 7zip, UserBenchmark, 3DMark, AIDA64, Cinebench 23 (20, 15), DaVinci Resolve Studio, VeraCrypt, World of Tanks enCore Benchmark, RealBench, SuperPi, WPrime, PCMark 10. Gaming performance of CPUs in: - World of Warcraft: Shadowlands
- Grand Theft Auto V
- Valheim
- Last Man Standing
- DOOM: Eternal
- Red Dead Redemption 2
- Fortnite
- Assassin's Creed Valhalla
- Overwatch
- Fallout 76
- Death Stranding
- Watch Dogs Legion
- Halo Infinite
- Valorant
- Apex Legends
- Call of Duty: Warzone and Modern Warfare
- Borderlands 3
- Rainbow Six Siege
- Cyberpunk 2077
After looking at the data these benchmarks and videos, you already be able to know which CPU is better to buy for gaming Intel Core i7-4770 or AMD Ryzen 5 3500X.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Ryzen 5 3500X | 54% |
Core i7-4770 | 52% | The number of this parameter shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Ryzen 5 3500X is 3% better than Core i7-4770. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Ryzen 5 3500X | 53% |
Core i7-4770 | 52% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And of course, this is a server processor, on which no one will play games. Because the cost of this processor reaches several tens of thousands of dollars. Therefore, if you think that the selected CPU has a low game result, look at the FPS that it produces in real games in the summary table below. List of less popular games in which processors were compared: DOTA 2A, The Witcher 3: Wild Hunt, NBA 2K20, Metro Exodus, Microsoft Flight Simulator, Forza Horizon 4, Monster Hunter World, League of Legends (LOL), Shadow of the Tomb Raider, Counter-Strike: Global Offensive (CS GO), Ghostrunner, Resident Evil 7 Biohazard, Control, Hitman 3, Horizon Zero Dawn, Battlefield V, PlayerUnknown's Battlegrounds (PUBG), Half-Life: Alyx.
Gaming benchmarkFortnite | 94.1 | 92.1 | Valorant | 106.9 | 104.7 | Cyberpunk 2077 | 59.9 | 58.6 | Apex Legends | 100.5 | 98.4 | Call of Duty Warzone | 80.2 | 78.5 | Overwatch | 86.6 | 84.8 | Red Dead Redemption 2 | 73.8 | 72.2 | DOOM Eternal | 53.5 | 52.3 | Warzone | 83.4 | 81.6 | Assassin's Creed | 89.8 | 87.9 | Valheim | 88.7 | 86.9 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparisons not only were the equipped with different video cards and different amounts of RAM. But users also tested them at different screen resolutions: 2K, 4K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Ryzen 5 3500X | 65% |
Core i7-4770 | 38% | To make a final resolution on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 5 3500X is more energy efficient than the Core i7-4770 as it consumes less power: 65W vs. 84W. Power consumption is especially important for laptops. Also, when choosing a processor cooling system, you need to know its TDP. It is necessary to count so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksIf you plan to use the processor not only for gaming, but also for streaming, video rendering or video editing, programming, machine learning, then the main parameter for you is its performance in multi-threaded mode. In this mode, to reach maximum performance, the processor uses all cores and threads that it has. You will learn this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Because there are still many programs that use only one core to run, and all the benefit of multi-core mode turns out to be unnecessary. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | AMD Ryzen 5 3500X |
Intel Core i7-4770 | Cinbench 15 Single-core | 188 | 141 | Cinbench 15 Multi-core | 1129 | 690 | Cinbench 20 Single-core | 464 | 355 | Cinbench 20 Multi-core | 2652 | 1349 | Cinbench 23 Single-core | 1126 | 1102 | Cinbench 23 Multi-core | 7797 | 3271 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | AMD Ryzen 5 3500X |
Intel Core i7-4770 | Single-Core | 2562 | 2149 | Multi-Core | 13476 | 7010 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | AMD Ryzen 5 3500X |
Intel Core i7-4770 | Single-Core | 1272 | 974 | Multi-Core | 5963 | 4033 |
Comparison of specifications
In the specification comparison table, the most helpful will be the release date of the processor and the possibility of overclocking it. The later the processor is released, the longer it will last in your computer. And the easier it will be to upgrade the system in the future. The same benefits from the presence of overclocking. When the processor can be overclocked, thereby increasing its performance, then it will continue to maintain maximum FPS in new games. Accordingly, you do not need to buy a new CPU to enjoy the games any longer. The savings are obvious!
| AMD Ryzen 5 3500X |
Intel Core i7-4770 | Announcement date | September 24, 2019 | April 01, 2013 | Type | Desktop | Desktop | Socket | AM4 | LGA1150 | Core name | Matisse | Haswell | Architecture | Zen 2 | x86 | Generation | 3 | 4 | Turbo Frequency | 4.1 MHz | 3.9 MHz | Frequency | 3.6 MHz | 3.4 MHz | Cores | 6 | 4 | Threads | 6 | 8 | Bus rate | | 5 GT/s | Bit | 64 | 64 | Lithography | 7 nm | 22 nm | Transistors count | 4200 millions | 2460 millions | Power consumption (TDP) | 65 W | 84 W | Memory type | DDR4 | DDR3-1333/1600, DDR3L-1333/1600 @ 1.5V | Max. Memory | | 32 Gb | Memory Frequency | 3200 | | Memory bandwidth | | 25.6 GB/s | L1 cache | 384KB | | L2 cache | 3MB | | L3 cache | 32MB | 8 MB | Overclocking | Yes | No | Supports ECC | No | No | Part number | 100-000000158 100-100000158CBX 100-100000158MPK
| | In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 3500X is 5% better than Core i7-4770 in terms of CPU frequency. Another difference is that Ryzen 5 3500X has 2 more core than Core i7-4770. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which AMD Ryzen 5 3500X is better: 32
The number of parameters for which Intel Core i7-4770 is better: 6 However, it should be realized that all the number in the text above do not mean that taking them into account you should fully trust a simple quantitative comparison. Better to watch the testing video and read the reviews of real owners of AMD Ryzen 5 3500X and Intel Core i7-4770 before making a choice which of the processors to buy for gaming.
AMD Ryzen 5 3500X Processor Comparisons • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Core i7-8700K • Vs Ryzen 5 2600X • Vs Ryzen 5 4600H • Vs Core i7-10700 • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Core i7-9750H • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i7-7700K • Vs Core i5-9400F • Vs Ryzen 5 3400G • Vs Core i5-8400 • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Core i7-6700 • Vs Core i5-9300H • Vs Ryzen 5 3500U • Vs Core i7-4790 • Vs Core i7-10510U • Vs Core i7-7700HQ • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Xeon W-3175X • Vs Core i9-9960X • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i9-13900T • Vs Core i9-13900F • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE
Intel Core i7-4770 Processor Comparisons • Vs Core i7-4790 • Vs Ryzen 5 3500U • Vs Core i7-6700 • Vs Core i7-4790K • Vs Ryzen 5 2400G • Vs Core i7-1065G7 • Vs Core i7-6700K • Vs Ryzen 5 3400G • Vs Core i5-9400F • Vs Core i7-7700K • Vs Core i7-8750H • Vs Core i5-9600K • Vs Core i7-9750H • Vs Ryzen 5 1600 • Vs Core i5-10400 • Vs Core i5-10400F • Vs Core i7-10750H • Vs Core i7-8700 • Vs Ryzen 5 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Core i7-7700HQ • Vs Core i5-10210U • Vs Core i7-6700HQ • Vs Core i7-3770 • Vs Core i5-8250U • Vs FX-8350 Eight-Core • Vs Core i5-6500 • Vs Core i5-3470 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Core i7-10510U • Vs Core i7-2600 • Vs Ryzen 7 4700U • Vs Core i5-4590 • Vs Core i7-8550U • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-4570 • Vs Core i5-2400 • Vs Core i5-4460 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i5-1135G7 • Vs Core i5-8265U • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs FX-6300 Six-Core • Vs Core i5-7400 • Vs Core i7-4770K • Vs Core i5-7300HQ • Vs Core i3-9100F • Vs Core i7-7500U • Vs Core i5-3570K • Vs Core i5-6400 • Vs Core i5-9400 • Vs Core i7-3630QM • Vs Core i7-8565U • Vs Core i3-1005G1 • Vs Core i7-3770K • Vs Ryzen 5 3550H • Vs Pentium Gold 7505 • Vs Core i5-1145G7 • Vs Core i7-1160G7 • Vs Athlon Gold PRO 3150G • Vs Core i3-10320 • Vs Pentium Gold G6500 • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Core i3-9100TE • Vs Ryzen 5 3450U • Vs Core i5-10200H • Vs Core i3-1115G4 • Vs Core i3-10300T • Vs Athlon Gold PRO 3150GE • Vs Core i3-9350K • Vs Core i5-9300HF • Vs Ryzen 5 3550U • Vs Core i3-10305 • Vs Core i3-10305T • Vs Core i3-10105T • Vs Core i3-10105 • Vs Core i3-10105F • Vs Pentium Gold G6605 • Vs Pentium Gold G6505 • Vs Pentium Gold G6405 • Vs Core i3-1110G4 • Vs Core i3-1115GRE • Vs Core i3-1115G4E • Vs Core i3-1120G4 • Vs Core i3-1125G4 • Vs Athlon 300GE • Vs Athlon 320GE • Vs Ryzen 5 3500C • Vs Ryzen 7 3700C • Vs Ryzen 3 5300U • Vs Ryzen 3 3350U • Vs Core i5-1030NG7 • Vs Core i3-10100T • Vs Core i5-8260U • Vs Ryzen 5 3580U • Vs Core i7-10610U • Vs Core i7-10510Y • Vs Core i5-10310U • Vs Core i7-8565UC • Vs Core i7-1060NG7 • Vs Core i5-9400T • Vs Core i7-8557U • Vs Core i7-8665UE • Vs Core i5-8257U • Vs Core i5-8265UC • Vs Core i5-8279U • Vs Core i3-9100T • Vs Core i3-9320 • Vs Core i7-7820EQ • Vs Core i3-9300 • Vs Core i7-8705G • Vs Core i3-8300 • Vs Core i3-9100 • Vs Core i7-8665U • Vs Core i5-8365U • Vs Core i3-9300T • Vs Core i3-9350KF • Vs Core i3-8100B • Vs Core i5-8305G • Vs Core i7-5850EQ • Vs Core i5-8400T • Vs Core i3-8300T • Vs Core i3-8350K • Vs Core i5-4690K • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i3-6100 • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE
| |
|