|
Intel Core i9-10980HK vs Intel Core i7-10700T |
|
Processor comparisons 24-03-2021 For example you are thinking about choosing a CPU, you will be able to make a choice after reading the full tests Intel Core i9-10980HK vs Intel Core i7-10700T and understand which is better for games or normal use for streaming, rendering, programming, machine learning, video editing. Here is all information from real video editing and streaming tests or several benchmarks. A thorough analysis of all the specifications, so that it can be easier to read, is presented in the form of the table. From the video comparison, you can get the results of parallel examination in software tests such as VeraCrypt, Handbrake, World of Tanks enCore Benchmark, DaVinci Resolve Studio, WPrime, GeekBench 6, 5.2, PCMark 10, Dolphin Emulator, SuperPi, MATLAB, Furmark, Cinebench 23 (20, 15), AIDA64, 3DMark, Blender, PassMark, UserBenchmark, Blender, Gears 5, 7zip, RealBench, Prime95. Gaming performance of CPUs in: - Fallout 76
- Watch Dogs Legion
- Call of Duty: Warzone and Modern Warfare
- World of Warcraft: Shadowlands
- Valheim
- Overwatch
- Death Stranding
- Rainbow Six Siege
- Cyberpunk 2077
- Valorant
- Borderlands 3
- Apex Legends
- Assassin's Creed Valhalla
- Fortnite
- Red Dead Redemption 2
- Last Man Standing
- Grand Theft Auto V
- DOOM: Eternal
- Halo Infinite
After reading the results of parallel benchmarks and videos, you already be able to understand which CPU is better to buy for gaming Intel Core i7-10700T or Intel Core i9-10980HK.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i9-10980HK | 55% |
Core i7-10700T | 54% | This value shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Core i9-10980HK is 1% better than Core i7-10700T. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Core i9-10980HK | 55% |
Core i7-10700T | 54% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And of course, this is a server processor, on which no one will run games. Because the cost of this processor reaches several tens of thousands of dollars. And if it seems to you that the selected CPU has a small game result, just look at the FPS that it produces in real games in the final table below. List of other games in which processors were compared: Shadow of the Tomb Raider, Microsoft Flight Simulator, Counter-Strike: Global Offensive (CS GO), Battlefield V, PlayerUnknown's Battlegrounds (PUBG), Metro Exodus, Hitman 3, NBA 2K20, Half-Life: Alyx, DOTA 2A, Resident Evil 7 Biohazard, Control, Ghostrunner, The Witcher 3: Wild Hunt, Forza Horizon 4, Horizon Zero Dawn, League of Legends (LOL), Monster Hunter World.
Gaming benchmarkFortnite | 97.2 | 95.5 | Valorant | 110.5 | 108.6 | Cyberpunk 2077 | 61.9 | 60.8 | Apex Legends | 103.9 | 102.1 | Call of Duty Warzone | 82.9 | 81.4 | Overwatch | 89.5 | 87.9 | Red Dead Redemption 2 | 76.2 | 74.9 | DOOM Eternal | 55.2 | 54.3 | Warzone | 86.2 | 84.7 | Assassin's Creed | 92.8 | 91.2 | Valheim | 91.7 | 90.1 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers that were in the comparisons not only did they have different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 2K, FullHD or 4K. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Core i9-10980HK | 106% |
Core i7-10700T | 105% | To make a finishing resolution on which processor is better, you should also consider the generation of its core. It is clear that the newer the generation, the better the performance of the processor in games and benchmarks, as well as its energy efficiency. In this case the Core i9-10980HK is more energy efficient than the Core i7-10700T as it consumes less power: 45W vs. 35W. Power consumption is particularly important for laptops. Also, when choosing a processor cooling system, it will be useful to know its TDP. It is necessary to count so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksIf you want to use the processor not only for gaming, but also for machine learning, programming, streaming, video rendering or video editing, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, to reach maximum performance, the processor includes all threads and cores that it has. You will find out this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Because there are still many programs that use only one core to work, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i9-10980HK |
Intel Core i7-10700T | Cinbench 15 Single-core | 219 | 203 | Cinbench 15 Multi-core | 1627 | 1845 | Cinbench 20 Single-core | 507 | 470 | Cinbench 20 Multi-core | 3643 | 3896 | Cinbench 23 Single-core | 1136 | 1152 | Cinbench 23 Multi-core | 11013 | 8331 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i9-10980HK |
Intel Core i7-10700T | Single-Core | 2913 | 2679 | Multi-Core | 16588 | 13180 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i9-10980HK |
Intel Core i7-10700T | Single-Core | 1437 | 1112 | Multi-Core | 9056 | 7393 |
Comparison of specifications
In the specification comparison table, the processor release date and overclocking capability will be the most helpful. The newer the processor, the longer it will last you. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will continue to maintain maximum FPS even in the newest games. The savings are obvious! Accordingly, you do not need to buy a new CPU to enjoy the games any longer.
| Intel Core i9-10980HK |
Intel Core i7-10700T | Announcement date | April 01, 2020 | April 01, 2020 | Type | Laptop | Desktop | Socket | FCBGA1440 | FCLGA1200 | Core name | Comet Lake | Comet Lake | Architecture | x86 | x86 | Generation | 10 | 10 | Turbo Frequency | 5.3 MHz | 4.5 MHz | Frequency | 2.4 MHz | 2 MHz | Cores | 8 | 8 | Threads | 16 | 16 | Bus rate | 8 GT/s | 8 GT/s | Bit | 64 | 64 | Lithography | 14 nm | 14 nm | Transistors count | 2100 millions | 6800 millions | Power consumption (TDP) | 45 W | 35 W | Memory type | DDR4-2933 | DDR4-2933 | Max. Memory | 128 Gb | 128 Gb | Memory Frequency | | | Memory bandwidth | 45.8 GB/s | 45.8 GB/s | L1 cache | | | L2 cache | | | L3 cache | 16 MB | 16 MB | Overclocking | No | Yes | Supports ECC | No | No | Part number | | | In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Core i9-10980HK is 16% better than Core i7-10700T in terms of CPU frequency. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i9-10980HK is better: 20
The number of parameters for which Intel Core i7-10700T is better: 6 However, it should be understood that all the figures in the table above do not mean that taking them into account you should entirely trust a simple quantitative comparison. Be sure to watch the video tests and read the opinion of of people who bought Intel Core i9-10980HK and Intel Core i7-10700T before making a choice which processor to buy for gaming and which not.
Intel Core i9-10980HK Processor Comparisons • Vs Ryzen 5 PRO 4650G • Vs Core i9-10900T • Vs Ryzen 7 PRO 2700X • Vs Ryzen Threadripper 1900X • Vs Core i7-11800H • Vs Core i9-9900 • Vs Core i7-6950X • Vs Core i7-10700F • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i5-11400T • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 5600H • Vs Core i7-10700 • Vs Core i5-11500T • Vs Ryzen 5 PRO 3600 • Vs Core i5-11600T • Vs Ryzen 7 Extreme Edition • Vs Core i7-9800X • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Xeon E5-2680R v4 • Vs Core i5-11400F • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Core i9-9900KF • Vs Core i5-11400 • Vs Ryzen 7 4800HS • Vs Core i7-10870H • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 5600HS • Vs Ryzen 5 4600H • Vs Ryzen 5 PRO 4400GE • Vs Ryzen 5 5600U • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 4600HS • Vs Ryzen 5 5500U • Vs Xeon W-2235 • Vs Ryzen 5 2600X • Vs Core i5-10600 • Vs Core i7-8700K • Vs Ryzen 5 4600U • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 2600E • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Core i5-10500 • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Core i5-11300H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Ryzen 7 1700X • Vs Ryzen 7 PRO 1700 • Vs Core i9-10900TE • Vs Core i9-10900E • Vs Core i5-11320H • Vs Xeon W-11855M • Vs Core i7-12700H • Vs Core i3-1210U • Vs Core i5-1230U • Vs Core i5-1240U • Vs Core i7-1250U • Vs Core i3-1215U • Vs Core i5-1235U • Vs Core i5-1245U • Vs Core i7-1255U • Vs Core i7-1260U • Vs Core i7-1265U • Vs Ryzen 3 PRO 5475U • Vs Ryzen 5 5625U • Vs Core i9-9980HK • Vs Core i7-1265UE • Vs Core i7-1255UL • Vs Core i5-1235UL • Vs Core i5-1245UL • Vs Core i5-1245UE • Vs Core i3-1215UL • Vs Core i3-1215UE • Vs Core i3-1220PE • Vs Ryzen 7 7700X • Vs Ryzen 5 7600X • Vs Core i3-N305 • Vs Core i3-N300 • Vs Core i7-13700H • Vs Core i5-1350P • Vs Core i5-1340P • Vs Core i5-13600H • Vs Core i5-13505H • Vs Core i5-1335U • Vs Core i5-1334U • Vs Core i5-13420H • Vs Core i3-1315U • Vs Core i3-1305U • Vs Core i7-1370P • Vs Core i7-13620H • Vs Core i7-13650HX • Vs Core i7-13800H • Vs Core i7-13850HX • Vs Core i9-13900H • Vs Core i9-13905H • Vs Ryzen 5 5625C • Vs Ryzen 7 5825C • Vs Ryzen 7 3750H
Intel Core i7-10700T Processor Comparisons • Vs Ryzen 5 2600 • Vs Core i5-10500 • Vs Ryzen 5 3500X • Vs Core i7-9700 • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Core i7-8700K • Vs Core i5-10600 • Vs Ryzen 5 2600X • Vs Core i7-9700K • Vs Ryzen 7 1700 • Vs Core i5-10600K • Vs Ryzen 5 4600H • Vs Ryzen 7 2700 • Vs Core i7-10875H • Vs Core i7-10700F • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i7-10700 • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600K • Vs Ryzen 9 4900U • Vs Ryzen 7 5800 • Vs Core i7-8700 • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Ryzen 3 4300GE • Vs Ryzen 3 3100 • Vs Core i5-1145G7 • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Ryzen 3 PRO 4200GE • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i3-10320 • Vs Core i5-1135G7 • Vs Core i7-7700K • Vs Core i5-9400F • Vs Core i5-9400 • Vs Ryzen 5 3400G • Vs Ryzen 5 3350G • Vs Core i5-8400 • Vs Core i5-10200H • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Core i3-10100 • Vs Core i3-10100F • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 5 5600 • Vs Ryzen 5 7600 • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 5 5500
| |
|