|
AMD Ryzen 7 PRO 3700 vs Intel Xeon E5-2697R v4 |
|
Processor comparisons 18-03-2021 Let's say you have difficulties with the choice of a CPU, you will solve them by reading the detailed tests AMD Ryzen 7 PRO 3700 vs Intel Xeon E5-2697R v4 and understand which is better for games or normal use for video editing, programming, machine learning, rendering, streaming. Here you can find useful information from various benchmarks or real video editing and streaming tests. A step-by-step analysis of all the technical characteristics, to make it easier to understand, is summarized in the table. From the video comparison, you can get the results of parallel examination in special test applications such as PassMark, GeekBench 6, 5.2, SuperPi, UserBenchmark, MATLAB, Cinebench 23 (20, 15), Dolphin Emulator, World of Tanks enCore Benchmark, Furmark, WPrime, 3DMark, Handbrake, Blender, Blender, VeraCrypt, RealBench, AIDA64, Prime95, 7zip, PCMark 10, DaVinci Resolve Studio, Gears 5. Gaming performance of CPUs in: - Grand Theft Auto V
- Borderlands 3
- Overwatch
- Red Dead Redemption 2
- Assassin's Creed Valhalla
- World of Warcraft: Shadowlands
- DOOM: Eternal
- Fallout 76
- Watch Dogs Legion
- Call of Duty: Warzone and Modern Warfare
- Last Man Standing
- Valheim
- Halo Infinite
- Cyberpunk 2077
- Valorant
- Rainbow Six Siege
- Apex Legends
- Death Stranding
- Fortnite
After looking at the data these benchmarks and videos, you already be able to know which processor is better to buy for gaming Intel Xeon E5-2697R v4 or AMD Ryzen 7 PRO 3700.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Ryzen 7 PRO 3700 | 57% |
Xeon E5-2697R v4 | 55% | The number of this parameter shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Ryzen 7 PRO 3700 is 3% better than Xeon E5-2697R v4. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Ryzen 7 PRO 3700 | 55% |
Xeon E5-2697R v4 | 61% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And of course, this is a server processor, on which no one will play games. Because this processor costs several tens of thousands of dollars. Therefore, if you think that the selected CPU has a low game result, just look at the FPS that it produces in real games in the summary table below. List of other games in which processors were compared: Battlefield V, Counter-Strike: Global Offensive (CS GO), DOTA 2A, Hitman 3, Forza Horizon 4, NBA 2K20, The Witcher 3: Wild Hunt, Resident Evil 7 Biohazard, Metro Exodus, Control, Horizon Zero Dawn, League of Legends (LOL), Ghostrunner, Shadow of the Tomb Raider, Microsoft Flight Simulator, Monster Hunter World, Half-Life: Alyx, PlayerUnknown's Battlegrounds (PUBG).
Gaming benchmarkFortnite | 98.2 | 108.6 | Valorant | 111.6 | 123.4 | Cyberpunk 2077 | 62.5 | 69.1 | Apex Legends | 104.9 | 116.0 | Call of Duty Warzone | 83.7 | 92.6 | Overwatch | 90.4 | 100.0 | Red Dead Redemption 2 | 77.0 | 85.2 | DOOM Eternal | 55.8 | 61.7 | Warzone | 87.0 | 96.3 | Assassin's Creed | 93.7 | 103.7 | Valheim | 92.6 | 102.5 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers that were in the comparisons not only did they have different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 2K, FullHD or 4K. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Ryzen 7 PRO 3700 | 70% |
Xeon E5-2697R v4 | 20% | To make a finishing decision on which processor is better, you should also consider the generation of its core. It is clear that the newer the generation, the better the performance of the processor in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 7 PRO 3700 is more energy efficient than the Xeon E5-2697R v4 as it consumes less power: 65W vs. 145W. Power consumption is especially important for laptops. Also, when choosing a processor cooling system, you must know its TDP. It is necessary to calculate so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksFor example you want to use the processor not only for gaming, but also for programming, video rendering or video editing, streaming, machine learning, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, to achieve maximum efficiency, the CPU includes all threads and cores that it has. You will learn this data from the benchmark tables below. Before you take into account the data from these tests, be sure to check whether the program you are going to use on your computer supports multi-threaded mode. Because there are still many programs that can use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | AMD Ryzen 7 PRO 3700 |
Intel Xeon E5-2697R v4 | Cinbench 15 Single-core | 227 | 108 | Cinbench 15 Multi-core | 2196 | 3177 | Cinbench 20 Single-core | 527 | 240 | Cinbench 20 Multi-core | 4811 | 7475 | Cinbench 23 Single-core | 1311 | 641 | Cinbench 23 Multi-core | 13391 | 18061 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | AMD Ryzen 7 PRO 3700 |
Intel Xeon E5-2697R v4 | Single-Core | 2952 | 1916 | Multi-Core | 24209 | 18383 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | AMD Ryzen 7 PRO 3700 |
Intel Xeon E5-2697R v4 | Single-Core | 1369 | 910 | Multi-Core | 10006 | 20218 |
Comparison of specifications
In the specification comparison table, the processor release date and overclocking capability will be the most helpful. The newer the processor, the longer it will last you. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will continue to maintain maximum FPS even in the newest games. The savings are obvious! Accordingly, you do not need to buy a new CPU to enjoy the games any longer.
| AMD Ryzen 7 PRO 3700 |
Intel Xeon E5-2697R v4 | Announcement date | September 30, 2019 | January 01, 2021 | Type | Desktop | Server | Socket | AM4 | FCLGA2011-3 | Core name | Matisse | Broadwell | Architecture | Zen 2 | x86 | Generation | 3 | 4 | Turbo Frequency | 4.4 MHz | 3.6 MHz | Frequency | 3.6 MHz | 2.3 MHz | Cores | 8 | 18 | Threads | 16 | 36 | Bus rate | | 9.6 GT/s | Bit | 64 | 64 | Lithography | 7 nm | 14 nm | Transistors count | 4600 millions | 4130 millions | Power consumption (TDP) | 65 W | 145 W | Memory type | DDR4 | DDR4 1600/1866/2133/2400 | Max. Memory | | 15 Gb | Memory Frequency | 3200 | | Memory bandwidth | | 76.8 GB/s | L1 cache | 512KB | | L2 cache | 4MB | | L3 cache | 32MB | 45 MB | Overclocking | No | Yes | Supports ECC | No | Yes | Part number | 100-000000073
| | In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 7 PRO 3700 is 36% better than Xeon E5-2697R v4 in terms of CPU frequency. Another difference is that Xeon E5-2697R v4 has 10 more core than Ryzen 7 PRO 3700. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which AMD Ryzen 7 PRO 3700 is better: 14
The number of parameters for which Intel Xeon E5-2697R v4 is better: 25 However, it should be understood that the summary data in the table above do not mean that you should be guided entirely by them and trust a simple comparison of these figures. Better to watch benchmarks video and read the opinion of of people who bought AMD Ryzen 7 PRO 3700 and Intel Xeon E5-2697R v4 before deciding which CPU to buy for gaming and which not.
AMD Ryzen 7 PRO 3700 Processor Comparisons • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i7-11700T • Vs Core i9-9920X • Vs Ryzen 7 5800H • Vs Core i9-11900T • Vs Ryzen Threadripper 2920X • Vs Ryzen 9 5980HS • Vs Core i7-11700F • Vs Ryzen 9 5980HX • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i7-11700 • Vs Ryzen Threadripper 1950X • Vs Core i7-11700KF • Vs Core i9-7940X • Vs Core i9-7960X • Vs Core i7-11700K • Vs Core i9-11900F • Vs Ryzen 7 Pro 5850U • Vs Core i9-11900 • Vs Core i9-11900KF • Vs Ryzen 7 5700G • Vs Xeon W-2275 • Vs Ryzen 7 Pro 5750G • Vs Ryzen 7 5800X • Vs Apple M1X • Vs Ryzen Threadripper 2970WX • Vs Core i9-10940X • Vs Core i9-7980XE • Vs Core i9-10900K • Vs Ryzen 7 3800XT • Vs Ryzen 9 5900HX • Vs Ryzen 7 3800X • Vs Core i9-10850K • Vs Ryzen 9 5900HS • Vs Ryzen 7 3700X • Vs EPYC 7F32 • Vs Ryzen 7 5800U • Vs Ryzen 5 5600X • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Xeon Gold 6130T • Vs Ryzen 7 5800 • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Core i7-10700K • Vs Core i5-11500 • Vs Ryzen 7 4800H • Vs Ryzen 5 3600XT • Vs Core i9-9900K • Vs Xeon E5-2680R v4 • Vs Ryzen 5 3600X • Vs Xeon W-1290T • Vs Core i5-11500T • Vs Core i5-11400 • Vs Ryzen Threadripper 1920X • Vs Core i5-11400F • Vs Ryzen 9 5600X • Vs Ryzen 7 5700U • Vs Ryzen 7 5800HS • Vs Core i9-10900KF • Vs Core i9-7920X • Vs Core i9-10910 • Vs Core i9-10900X • Vs Core i7-10700KF • Vs Core i9-9900X • Vs Core i9-7900X • Vs Core i9-10900F • Vs Core i9-10900 • Vs Core i9-9820X • Vs Ryzen 7 PRO 4750G • Vs Ryzen 7 PRO 4700G • Vs Ryzen 7 4700GE • Vs Core i9-11950H • Vs Core i5-1155G7 • Vs Core i7-11700B • Vs Core i7-11850H • Vs Core i7-12650H • Vs Core i5-12600H • Vs Core i7-1260P • Vs Core i7-1270P • Vs Core i7-1280P • Vs Core i5-12450H • Vs Core i5-12500H • Vs Core i5-12400 • Vs Core i5-12400F • Vs Core i5-12400T • Vs Core i5-12500 • Vs Core i5-12500E • Vs Core i5-12500TE • Vs Core i5-12500T • Vs Core i5-12600 • Vs Core i5-12600HE • Vs Core i5-12600T • Vs Core i3-12300HE • Vs Ryzen 5 PRO 6650U • Vs Ryzen 7 6800H • Vs Ryzen 5 6600H • Vs Ryzen 7 6800HS • Vs Ryzen 5 6600HS • Vs Ryzen 5 6600U • Vs Ryzen 7 6800U • Vs Ryzen 7 5825U • Vs Ryzen 7 Pro 5750GE • Vs Core i7-1270PE • Vs Core i5-12500HL • Vs Core i5-12450HX • Vs Core i5-12600HX • Vs Core i3-12300HL • Vs Ryzen 9 7950X • Vs Ryzen 9 7900X • Vs Ryzen 7 7700X • Vs Ryzen 5 7600X • Vs Core i9-12900KS • Vs Core i9-13900K • Vs Core i9-12900K • Vs Core i9-12900F • Vs Core i9-13900KF • Vs Core i7-13700KF • Vs Core i5-13600K • Vs Core i5-13600KF • Vs Core i9-13900KS • Vs Ryzen Threadripper PRO 5965WX • Vs Core i5-13500 • Vs Core i7-13700 • Vs Core i9-13900 • Vs Core i3-13100 • Vs Apple M2 • Vs Apple M1 Pro • Vs Apple M1 Max • Vs Apple M2 Pro • Vs Apple M2 Max • Vs Core i5-13600 • Vs Core i7-13700H • Vs Core i9-13900HK • Vs Core i9-13900HX • Vs Core i5-13600HX • Vs Core i9-13950HX • Vs Ryzen 5 5600 • Vs Ryzen 9 7900 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i9-13980HX • Vs Core i9-13900T • Vs Core i9-13900F • Vs Core i7-13700F • Vs Core i7-13700T • Vs Core i5-13600T • Vs Core i5-13500T • Vs Core i5-13400F • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300 • Vs Core i3-13300F • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X3D • Vs Ryzen 9 5900 • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Ryzen 5 PRO 5645 • Vs Ryzen 7 7800X3D
Intel Xeon E5-2697R v4 Processor Comparisons • Vs Core i7-9700E • Vs Ryzen 7 5800 • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600K • Vs Ryzen 9 4900U • Vs Ryzen 5 5600G • Vs Apple M1 • Vs Ryzen 5 5600X • Vs Ryzen 7 5800U • Vs Ryzen 7 3700X • Vs Ryzen 9 5900HS • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Ryzen 9 5900HX • Vs Core i9-10900K • Vs Core i9-9920X • Vs Ryzen 7 5800H • Vs Ryzen Threadripper 2920X • Vs Ryzen 9 5980HS • Vs Core i9-10920X • Vs Ryzen 9 5980HX • Vs Ryzen Threadripper 1950X • Vs Core i9-7940X • Vs Core i9-7960X • Vs Core i7-11700K • Vs Ryzen 7 Pro 5850U • Vs Ryzen 5 3600X • Vs Core i7-10700 • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-10700F • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 4600H • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 2600X • Vs Core i7-8700K • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Ryzen 3 3300X • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Ryzen 3 4300GE • Vs Ryzen 3 3100 • Vs Core i5-1145G7 • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Xeon W-1290T • Vs EPYC 7F32 • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i7-11800H • Vs Core i9-11900T • Vs Core i7-11700 • Vs Core i7-11700F • Vs Core i7-11700T • Vs Ryzen 7 3800XT • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Ryzen Threadripper 1920X • Vs Core i5-11400F • Vs Core i5-11400T • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 7 5700U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10910 • Vs Core i9-10900X • Vs Core i7-10700KF • Vs Core i9-9900X • Vs Core i9-7900X • Vs Core i9-10900F • Vs Core i9-10900 • Vs Core i9-9820X • Vs Core i9-9900KS • Vs Core i7-7900X • Vs Core i9-10900T • Vs Ryzen 7 PRO 4750G • Vs Ryzen 7 PRO 4700G • Vs Core i9-9900KF • Vs Ryzen 5 PRO 3600 • Vs Ryzen 7 4700G • Vs Core i7-9800X • Vs Ryzen 9 4900H • Vs Ryzen 9 4900HS • Vs Ryzen 7 4800HS • Vs Ryzen 7 4700GE • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Ryzen 7 1800X • Vs Ryzen 5 PRO 4650GE • Vs Ryzen 5 4600GE • Vs Core i9-10900TE • Vs Core i9-10900E • Vs Core i5-1155G7 • Vs Core i5-11500B • Vs Core i5-11400H • Vs Core i5-11500H • Vs Core i7-12700H • Vs Core i5-1230U • Vs Core i5-1240U • Vs Core i7-1250U • Vs Core i5-1235U • Vs Core i5-1245U • Vs Core i7-1255U • Vs Core i7-1260U • Vs Core i7-1265U • Vs Core i3-1220P • Vs Core i5-1240P • Vs Core i5-1250P • Vs Core i3-12100 • Vs Core i3-12100E • Vs Core i3-12100F • Vs Core i3-12100T • Vs Core i3-12100TE • Vs Core i3-12300T • Vs Ryzen 7 PRO 5875U • Vs Ryzen 5 PRO 5675U • Vs Ryzen 5 PRO 5650GE • Vs Core i7-1265UE • Vs Core i7-1265UL • Vs Core i7-1255UL • Vs Core i5-1235UL • Vs Core i5-1245UL • Vs Core i5-1245UE • Vs Core i3-1220PE • Vs EPYC 7F72 • Vs EPYC 7F52 • Vs EPYC 9654P • Vs EPYC 9654 • Vs EPYC 9634 • Vs EPYC 9554 • Vs EPYC 9554P • Vs EPYC 9534 • Vs EPYC 9124 • Vs EPYC 9224 • Vs EPYC 9174F • Vs EPYC 9254 • Vs EPYC 9274F • Vs EPYC 9334 • Vs EPYC 9354 • Vs EPYC 9354P • Vs EPYC 9374F • Vs EPYC 9454 • Vs EPYC 9454P • Vs EPYC 9474F • Vs EPYC 7232P • Vs EPYC 7402 • Vs EPYC 7252 • Vs EPYC 7262 • Vs EPYC 7352 • Vs EPYC 7532 • Vs EPYC 7542 • Vs EPYC 7552 • Vs EPYC 7642 • Vs EPYC 7662 • Vs EPYC 7702P • Vs EPYC 7742 • Vs EPYC 7713P • Vs EPYC 7H12 • Vs EPYC 72F3 • Vs EPYC 7313 • Vs EPYC 7313P • Vs EPYC 7343 • Vs EPYC 73F3 • Vs EPYC 7373X • Vs Xeon Gold 5415+ • Vs Xeon Gold 6434 • Vs EPYC 7473X • Vs Xeon Gold 6434H • Vs EPYC 7573X • Vs Xeon Bronze 3408U • Vs Xeon Silver 4410T • Vs Xeon Silver 4410Y • Vs EPYC 7763 • Vs EPYC 7773X • Vs Xeon Platinum 8444H • Vs Xeon Gold 5416S • Vs Xeon Gold 6416H • Vs Xeon Silver 4416+
| |
|