|
Intel Core i7-11800H vs Intel Core i5-10500 |
|
Processor comparisons 18-03-2021 For example you have difficulties with the choice of a processor, you will solve them by reading the full tests Intel Core i7-11800H vs Intel Core i5-10500 and see which is better for games or normal use for rendering, machine learning, streaming, programming, video editing. Here you can find all information from real video editing and streaming tests or several benchmarks. A step-by-step analysis of all the specifications, so that it can be easier to understand, is made by the table. From the video comparison, you can get the results of parallel examination in software tests like SuperPi, Blender, PCMark 10, UserBenchmark, 7zip, World of Tanks enCore Benchmark, Prime95, Cinebench 23 (20, 15), Gears 5, MATLAB, RealBench, DaVinci Resolve Studio, 3DMark, Dolphin Emulator, Blender, WPrime, PassMark, GeekBench 6, 5.2, VeraCrypt, Handbrake, Furmark, AIDA64. And how good the processors are in games: - Red Dead Redemption 2
- Halo Infinite
- Grand Theft Auto V
- Fallout 76
- Death Stranding
- Borderlands 3
- Watch Dogs Legion
- Cyberpunk 2077
- Valorant
- Valheim
- DOOM: Eternal
- Apex Legends
- Call of Duty: Modern Warfare and Warzone
- Rainbow Six Siege
- Assassin's Creed Valhalla
- World of Warcraft: Shadowlands
- Fortnite
- Overwatch
- Last Man Standing
After reading the results these benchmarks and videos, you already be able to figure out which CPU is better to buy for gaming Intel Core i5-10500 or Intel Core i7-11800H.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i7-11800H | 55% |
Core i5-10500 | 54% | This shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Core i7-11800H is 1% better than Core i5-10500. The data source is several popular tests. Detailed information can be found below.
Gaming performance Summary result of all game benchmarks.Core i7-11800H | 54% |
Core i5-10500 | 54% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And of course, this is a server processor, on which no one will play games. Because this processor costs several tens of thousands of dollars. And if it seems to you that the selected CPU has a little game result, look at the FPS that it produces in real games in the summary table below. List of other games in which processors were compared: DOTA 2A, Microsoft Flight Simulator, Battlefield V, Monster Hunter World, Ghostrunner, Control, The Witcher 3: Wild Hunt, League of Legends (LOL), Hitman 3, Counter-Strike: Global Offensive (CS GO), PlayerUnknown's Battlegrounds (PUBG), Horizon Zero Dawn, Forza Horizon 4, NBA 2K20, Resident Evil 7 Biohazard, Metro Exodus, Shadow of the Tomb Raider, Half-Life: Alyx.
Gaming benchmarkFortnite | 96.5 | 95.4 | Valorant | 109.7 | 108.4 | Cyberpunk 2077 | 61.4 | 60.7 | Apex Legends | 103.1 | 101.9 | Call of Duty Warzone | 82.3 | 81.3 | Overwatch | 88.8 | 87.8 | Red Dead Redemption 2 | 75.7 | 74.8 | DOOM Eternal | 54.8 | 54.2 | Warzone | 85.6 | 84.5 | Assassin's Creed | 92.1 | 91.0 | Valheim | 91.0 | 90.0 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparing not only were the equipped with different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 2K, 4K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Core i7-11800H | 133% |
Core i5-10500 | 61% | To make a finishing decision on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Core i7-11800H is more energy efficient than the Core i5-10500 since it has less power consumption: 40W vs. 65W. Power consumption is especially important for laptops. Also, when choosing a processor cooling system, you must know its TDP. It is necessary to count so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksLet's say you want to use the processor not only for gaming, but also for streaming, machine learning, programming, video editing or video rendering, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, the CPU includes all cores and threads that it has to the maximum to achieve maximum performance. You will learn this data from the benchmark tables below. Before you take into account the data from these tests, be sure to find out whether the program that you are going to use on your computer can work in multi-threaded mode. Because there are still many programs that can use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i7-11800H |
Intel Core i5-10500 | Cinbench 15 Single-core | 223 | 201 | Cinbench 15 Multi-core | 1629 | 1491 | Cinbench 20 Single-core | 534 | 467 | Cinbench 20 Multi-core | 3699 | 3392 | Cinbench 23 Single-core | 1249 | 1082 | Cinbench 23 Multi-core | 12194 | 8209 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i7-11800H |
Intel Core i5-10500 | Single-Core | 2925 | 2743 | Multi-Core | 17071 | 13414 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i7-11800H |
Intel Core i5-10500 | Single-Core | 1598 | 1196 | Multi-Core | 8354 | 7233 |
Comparison of specifications
In the specification comparison table, the most useful will be the release date of the processor and the possibility of overclocking it. The later the processor is released, the longer it will last you. And the easier it will be to upgrade the system in the future. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will still be able to produce maximum FPS in new games. Accordingly, there is no longer a need to buy a new CPU to enjoy the games any longer. The economy are obvious!
| Intel Core i7-11800H |
Intel Core i5-10500 | Announcement date | March 20, 2021 | April 01, 2020 | Type | Laptop | Desktop | Socket | FCBGA1440 | FCLGA1200 | Core name | Tiger Lake-H | Comet Lake | Architecture | x86 | x86 | Generation | 11 | 10 | Turbo Frequency | 4.6 MHz | 4.5 MHz | Frequency | 2.3 MHz | 3.1 MHz | Cores | 8 | 6 | Threads | 16 | 12 | Bus rate | 8 GT/s | 8 GT/s | Bit | 64 | 64 | Lithography | 14 nm | 14 nm | Transistors count | 8200 millions | 4800 millions | Power consumption (TDP) | 40 W | 65 W | Memory type | DDR4-2933 | DDR4-2666 | Max. Memory | 128 Gb | 128 Gb | Memory Frequency | | | Memory bandwidth | 45.8 GB/s | 41.6 GB/s | L1 cache | | | L2 cache | | | L3 cache | 24 MB | 12 MB | Overclocking | No | Yes | Supports ECC | No | No | Part number | | | In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Core i5-10500 is 25% better than Core i7-11800H in terms of CPU frequency. Another difference is that Core i7-11800H has 2 more core than Core i5-10500. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i7-11800H is better: 30
The number of parameters for which Intel Core i5-10500 is better: 2 However, it should be realized that the summary data in the text above do not mean that taking them into account you should completely trust a simple comparison of these numbers. Be sure to watch the testing video and read the reviews of real owners of Intel Core i7-11800H and Intel Core i5-10500 before deciding which of the processors to buy for gaming.
Intel Core i7-11800H Processor Comparisons • Vs Core i7-10700F • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i7-10700 • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Xeon E5-2680R v4 • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600K • Vs Ryzen 9 4900U • Vs Ryzen 7 5800 • Vs Xeon Gold 6130T • Vs Ryzen 5 5600G • Vs Apple M1 • Vs Ryzen 5 5600X • Vs Ryzen 7 5800U • Vs EPYC 7F32 • Vs Ryzen 7 3700X • Vs Ryzen 9 5900HS • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Ryzen 9 5900HX • Vs Core i9-10900K • Vs Core i9-9920X • Vs Ryzen 7 5800H • Vs Core i7-10870H • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 4600H • Vs Ryzen 5 PRO 4400GE • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 4600HS • Vs Xeon W-2235 • Vs Ryzen 5 2600X • Vs Core i5-10600 • Vs Core i7-8700K • Vs Ryzen 5 4600U • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Ryzen 5 2600 • Vs Core i7-10700T • Vs Core i7-8700 • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Core i5-10600T • Vs Ryzen 3 4300GE • Vs Core i7-11700T • Vs Ryzen 7 3800XT • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i5-11300H • Vs Core i7-11375H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 7 5700U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i7-10700KF • Vs Core i9-9900X • Vs Core i9-7900X • Vs Core i9-10900F • Vs Core i9-10900 • Vs Core i9-9820X • Vs Core i9-9900KS • Vs Core i7-7900X • Vs Core i9-10900T • Vs Core i9-9900KF • Vs Ryzen 5 PRO 3600 • Vs Core i7-9800X • Vs Ryzen 9 4900H • Vs Ryzen 9 4900HS • Vs Ryzen 7 4800HS • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Ryzen 7 1700X • Vs Core i9-10900TE • Vs Core i9-10900E • Vs Core i5-11320H • Vs Core i5-11400H • Vs Xeon W-11855M • Vs Core i7-12700H • Vs Core i3-1210U • Vs Core i5-1230U • Vs Core i5-1240U • Vs Core i7-1250U • Vs Core i3-1215U • Vs Core i5-1235U • Vs Core i5-1245U • Vs Core i7-1255U • Vs Core i7-1260U • Vs Core i7-1265U • Vs Core i3-1220P • Vs Ryzen 5 PRO 5675U • Vs Ryzen 3 PRO 5475U • Vs Ryzen 5 PRO 5650GE • Vs Ryzen 5 5625U • Vs Core i9-9980HK • Vs Core i7-1265UE • Vs Core i7-1255UL • Vs Core i5-1235UL • Vs Core i5-1245UL • Vs Core i5-1245UE • Vs Core i3-1215UL • Vs Core i3-1215UE • Vs Core i3-1220PE • Vs Ryzen 7 7700X • Vs Ryzen 5 7600X • Vs Core i3-N305 • Vs Core i3-N300 • Vs Core i7-13700H • Vs Core i9-13950HX • Vs Core i7-1360P • Vs Core i5-1350P • Vs Core i5-1340P • Vs Core i5-13500HX • Vs Core i5-13600H • Vs Core i5-13500H • Vs Core i5-13505H • Vs Core i5-1335U • Vs Core i5-1334U • Vs Core i5-13420H • Vs Core i5-13450HX • Vs Core i7-1355U • Vs Core i7-1365U • Vs Core i3-1315U • Vs Core i3-1305U • Vs Core i7-1370P • Vs Core i7-13620H • Vs Core i7-13650HX • Vs Core i7-13705H • Vs Core i7-13800H • Vs Core i7-13850HX • Vs Core i9-13900H • Vs Core i9-13905H • Vs Core i5-8350U • Vs Core i7-8650U • Vs Ryzen 7 3750H • Vs Core i9-9880H • Vs Ryzen 5 5625C • Vs Ryzen 7 5825C • Vs Ryzen 3 5425C • Vs Ryzen 7 3700C • Vs Ryzen 5 3500C • Vs Ryzen 9 7945HX • Vs Ryzen 9 7845HX • Vs Ryzen 7 7745HX • Vs Ryzen 5 7645HX • Vs Ryzen 9 7940HS • Vs Ryzen 5 7640HS • Vs Ryzen 7 7735HS • Vs Ryzen 5 7535HS • Vs Ryzen 7 7736U • Vs Ryzen 7 7735U • Vs Ryzen 5 7535U • Vs Ryzen 3 7335U • Vs Ryzen 7 7730U • Vs Ryzen 3 7330U • Vs Ryzen 5 7520U • Vs Ryzen 3 7320U • Vs Ryzen 5 5560U • Vs Ryzen 7 PRO 6860Z
Intel Core i5-10500 Processor Comparisons • Vs Ryzen 5 3500X • Vs Core i7-9700 • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Core i7-8700K • Vs Core i5-10600 • Vs Ryzen 5 2600X • Vs Core i7-9700K • Vs Ryzen 7 1700 • Vs Core i5-10600K • Vs Ryzen 5 4600H • Vs Ryzen 7 2700 • Vs Core i7-10875H • Vs Core i7-10700F • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i7-10700 • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600K • Vs Ryzen 9 4900U • Vs Ryzen 7 5800 • Vs Ryzen 5 5600G • Vs Apple M1 • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Ryzen 3 4300GE • Vs Ryzen 3 3100 • Vs Core i5-1145G7 • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Ryzen 3 PRO 4200GE • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i3-10320 • Vs Core i5-1135G7 • Vs Core i7-7700K • Vs Core i5-9400F • Vs Core i5-9400 • Vs Ryzen 5 3400G • Vs Ryzen 5 3350G • Vs Core i5-8400 • Vs Core i5-10200H • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Core i3-10100 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 5 5600 • Vs Ryzen 5 7600 • Vs Core i5-13600T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Core i3-13300F • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X3D • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE
| |
|