|
AMD EPYC 7F32 vs AMD Ryzen 9 5980HS |
|
Processor comparisons 17-03-2021 You may have difficulties with the choice of a processor, you will solve them by reading the full tests AMD EPYC 7F32 vs AMD Ryzen 9 5980HS and understand which is better for games or normal use for video editing, programming, rendering, streaming, machine learning. Here is useful information from real streaming and video editing tests or different benchmarks. A careful analysis of all the specifications, so that it can be easier to understand, is presented in the form of the table. From the video comparison, you can get the results of joint testing in software tests like Handbrake, SuperPi, 7zip, 3DMark, Cinebench 23 (20, 15), World of Tanks enCore Benchmark, AIDA64, WPrime, Furmark, GeekBench 6, 5.2, Blender, MATLAB, PCMark 10, VeraCrypt, PassMark, UserBenchmark, RealBench, Dolphin Emulator, Prime95, Blender, Gears 5, DaVinci Resolve Studio. Gaming performance of CPUs in: - Valorant
- Last Man Standing
- Fallout 76
- Borderlands 3
- Halo Infinite
- DOOM: Eternal
- Call of Duty: Modern Warfare and Warzone
- Apex Legends
- Red Dead Redemption 2
- Watch Dogs Legion
- Rainbow Six Siege
- Fortnite
- Assassin's Creed Valhalla
- Overwatch
- Cyberpunk 2077
- Grand Theft Auto V
- Valheim
- World of Warcraft: Shadowlands
- Death Stranding
After reading the results of all benchmarks and videos, you can already make an informed decision about which processor is better to buy for gaming AMD Ryzen 9 5980HS or AMD EPYC 7F32.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
EPYC 7F32 | 56% |
Ryzen 9 5980HS | 57% | This value shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Ryzen 9 5980HS is 1% better than EPYC 7F32. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.EPYC 7F32 | 61% |
Ryzen 9 5980HS | 54% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor at the moment. And of course, this is a server processor, on which no one will play games. Because this processor costs several tens of thousands of dollars. Therefore, if you think that the selected CPU has a small game result, just look at the FPS that it produces in real games in the summary table below. List of other games in which processors were compared: DOTA 2A, Microsoft Flight Simulator, Battlefield V, Monster Hunter World, Ghostrunner, Control, The Witcher 3: Wild Hunt, League of Legends (LOL), Hitman 3, Counter-Strike: Global Offensive (CS GO), PlayerUnknown's Battlegrounds (PUBG), Horizon Zero Dawn, Forza Horizon 4, NBA 2K20, Resident Evil 7 Biohazard, Metro Exodus, Shadow of the Tomb Raider, Half-Life: Alyx.
Gaming benchmarkFortnite | 108.2 | 96.7 | Valorant | 122.9 | 109.9 | Cyberpunk 2077 | 68.8 | 61.5 | Apex Legends | 115.5 | 103.3 | Call of Duty Warzone | 92.2 | 82.4 | Overwatch | 99.6 | 89.0 | Red Dead Redemption 2 | 84.8 | 75.8 | DOOM Eternal | 61.5 | 54.9 | Warzone | 95.9 | 85.7 | Assassin's Creed | 103.3 | 92.3 | Valheim | 102.0 | 91.2 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparisons not only were the equipped with different video cards and different amounts of RAM. But users also tested them at different screen resolutions: 4K, 2K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
EPYC 7F32 | 22% |
Ryzen 9 5980HS | 146% | To make a finishing resolution on which processor is better, you should also consider the generation of its core. It is clear that the newer the generation, the better the performance of the processor in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 9 5980HS is more energy efficient than the EPYC 7F32 as it consumes less power: 180W vs. 35W. Power consumption is particularly important for laptops. Also, when choosing a processor cooling system, it will be useful to know its TDP. It is necessary to count so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksLet's say you plan to use the processor not only for gaming, but also for streaming, machine learning, video rendering or video editing, programming, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, to achieve maximum performance, the CPU includes all cores and threads that it has. You will learn this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that can use only one core to run, and all the benefit of multi-core mode turns out to be unnecessary. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | AMD EPYC 7F32 |
AMD Ryzen 9 5980HS | Cinbench 15 Single-core | 67 | 245 | Cinbench 15 Multi-core | 2750 | 2370 | Cinbench 20 Single-core | 446 | 570 | Cinbench 20 Multi-core | 5829 | 5196 | Cinbench 23 Single-core | 308 | 1475 | Cinbench 23 Multi-core | 15159 | 13222 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | AMD EPYC 7F32 |
AMD Ryzen 9 5980HS | Single-Core | 2422 | 3158 | Multi-Core | 22236 | 26144 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | AMD EPYC 7F32 |
AMD Ryzen 9 5980HS | Single-Core | 1209 | 1536 | Multi-Core | 19778 | 8510 |
Comparison of specifications
In the specification comparison table, the processor release date and overclocking capability will be the most useful. The newer the processor, the longer it will last in your computer. And the easier it will be to upgrade the system in the future. The same benefits from the presence of overclocking. If the processor can be overclocked, increasing its performance, then it will still be able to produce maximum FPS in new games. It turns out that there is no longer a need to buy a new CPU to enjoy the games any longer. The savings are obvious!
| AMD EPYC 7F32 |
AMD Ryzen 9 5980HS | Announcement date | October 01, 2020 | January 12, 2021 | Type | Server | Laptop | Socket | SP3 | FP6 | Core name | Rome | Cezanne | Architecture | Zen 2 | Zen 3 | Generation | 2 | 5 | Turbo Frequency | 3.9 MHz | 4.8 MHz | Frequency | 3.7 MHz | 3 MHz | Cores | 8 | 8 | Threads | 16 | 16 | Bus rate | | | Bit | 64 | 64 | Lithography | 7 nm | 7 nm | Transistors count | 38000 millions | 9400 millions | Power consumption (TDP) | 180 W | 35 W | Memory type | DDR4 | DDR4 - Up to 3200MHz LPDDR4 - Up to 4266MHz | Max. Memory | | | Memory Frequency | | 3200 | Memory bandwidth | | | L1 cache | | | L2 cache | | 4MB | L3 cache | 128MB | 16MB | Overclocking | Yes | Yes | Supports ECC | No | No | Part number | 100-000000139 100-000000139WOF
| 100-000000474
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here EPYC 7F32 is 18% better than Ryzen 9 5980HS in terms of CPU frequency. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which AMD EPYC 7F32 is better: 17
The number of parameters for which AMD Ryzen 9 5980HS is better: 13 Although it should be realized that all the data in the table above do not mean that you should be guided entirely by them and trust a simple comparison of these numbers. Better to watch the video tests and read the opinion of real owners of AMD EPYC 7F32 and AMD Ryzen 9 5980HS before making a choice which of the CPUs to buy for gaming.
AMD EPYC 7F32 Processor Comparisons • Vs Xeon W-1290T • Vs Xeon Gold 6246R • Vs Ryzen 7 3700X • Vs Ryzen 9 5900HS • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Ryzen 9 5900HX • Vs Core i9-10900K • Vs Core i9-9920X • Vs Ryzen 7 5800H • Vs Ryzen Threadripper 2920X • Vs Core i9-10920X • Vs Ryzen 9 5980HX • Vs Ryzen Threadripper 2990X • Vs Ryzen Threadripper 1950X • Vs Core i9-7940X • Vs Core i9-7960X • Vs Core i7-11700K • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5700G • Vs Core i9-11900K • Vs Core i9-9940X • Vs Ryzen 7 Pro 5750G • Vs Ryzen 7 5800X • Vs Apple M1X • Vs Ryzen Threadripper 2970WX • Vs Core i9-10940X • Vs Core i9-7980XE • Vs Ryzen Threadripper 2950X • Vs Ryzen 9 3900 • Vs Ryzen 7 5800U • Vs Ryzen 5 5600X • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 7 5800 • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Ryzen 5 3600XT • Vs Core i9-9900K • Vs Xeon E5-2697R v4 • Vs Ryzen 5 3600X • Vs Core i7-10700 • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-10700F • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 4600H • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 2600X • Vs Core i7-8700K • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Core i5-10600 • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Xeon W-3245 • Vs Xeon W-2275 • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Xeon E5-2680R v4 • Vs Core i7-11800H • Vs Core i9-11900KF • Vs Core i9-11900 • Vs Core i9-11900F • Vs Core i9-11900T • Vs Core i7-11700KF • Vs Core i7-11700 • Vs Core i7-11700F • Vs Core i7-11700T • Vs Ryzen 7 3800XT • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Ryzen 7 PRO 3700 • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Ryzen Threadripper 1920X • Vs Core i5-11400F • Vs Core i5-11400T • Vs Ryzen 9 5600X • Vs Ryzen 7 5700U • Vs Ryzen 5 5600H • Vs Ryzen 7 5800HS • Vs Core i9-10900KF • Vs Core i9-7920X • Vs Core i9-10910 • Vs Core i9-10900X • Vs Core i7-10700KF • Vs Core i9-9900X • Vs Core i9-7900X • Vs Core i9-10900F • Vs Core i9-10900 • Vs Core i9-9820X • Vs Core i9-9900KS • Vs Core i7-7900X • Vs Ryzen 7 PRO 4750G • Vs Ryzen 7 PRO 4700G • Vs Ryzen 7 4700G • Vs Ryzen 9 4900H • Vs Ryzen 9 4900HS • Vs Ryzen 7 4800HS • Vs Ryzen 7 4700GE • Vs Core i5-1155G7 • Vs Core i5-11500B • Vs Core i5-11500H • Vs Core i7-11850H • Vs Core i5-12600H • Vs Core i5-1240P • Vs Core i5-1250P • Vs Core i7-1260P • Vs Core i7-1270P • Vs Core i7-1280P • Vs Core i5-12450H • Vs Core i5-12500H • Vs Core i5-12400 • Vs Core i5-12400F • Vs Core i5-12400T • Vs Core i5-12500 • Vs Core i5-12500E • Vs Core i5-12500TE • Vs Core i5-12500T • Vs Core i5-12600 • Vs Core i5-12600T • Vs Core i3-12100 • Vs Core i3-12100F • Vs Core i3-12300HE • Vs Core i3-12300 • Vs Ryzen 5 6600H • Vs Ryzen 5 6600HS • Vs Ryzen 5 6600U • Vs Ryzen 7 5825U • Vs Ryzen 5 PRO 5650G • Vs Ryzen 7 Pro 5750GE • Vs Core i7-1270PE • Vs Core i5-12500HL • Vs Core i5-12450HX • Vs Core i5-1250PE • Vs Core i3-12300HL • Vs EPYC 7F72 • Vs EPYC 7F52 • Vs EPYC 9654P • Vs EPYC 9654 • Vs EPYC 9634 • Vs EPYC 9554 • Vs EPYC 9554P • Vs EPYC 9534 • Vs EPYC 9124 • Vs EPYC 9224 • Vs EPYC 9174F • Vs EPYC 9254 • Vs EPYC 9274F • Vs EPYC 9334 • Vs EPYC 9354 • Vs EPYC 9354P • Vs EPYC 9374F • Vs EPYC 9454 • Vs EPYC 9454P • Vs EPYC 9474F • Vs EPYC 7232P • Vs EPYC 7402 • Vs EPYC 7252 • Vs EPYC 7262 • Vs EPYC 7352 • Vs EPYC 7532 • Vs EPYC 7542 • Vs EPYC 7552 • Vs EPYC 7642 • Vs EPYC 7662 • Vs EPYC 7702P • Vs EPYC 7742 • Vs EPYC 7713P • Vs EPYC 7H12 • Vs EPYC 72F3 • Vs EPYC 7313 • Vs EPYC 7313P • Vs EPYC 7343 • Vs EPYC 73F3 • Vs EPYC 7373X • Vs Xeon Gold 5415+ • Vs Xeon Gold 6434 • Vs EPYC 7473X • Vs Xeon Gold 6434H • Vs EPYC 7573X • Vs Xeon Bronze 3408U • Vs Xeon Silver 4410T • Vs Xeon Silver 4410Y • Vs EPYC 7763 • Vs EPYC 7773X • Vs Xeon Platinum 8444H • Vs Xeon Gold 5416S • Vs Xeon Gold 6416H • Vs Xeon Silver 4416+
AMD Ryzen 9 5980HS Processor Comparisons • Vs Ryzen 7 5700G • Vs Ryzen 7 5800X • Vs Core i9-9960X • Vs Core i9-9990XE • Vs Xeon W-3175X • Vs Core i9-9980XE • Vs Ryzen 9 3900X • Vs Ryzen 9 3900XT • Vs Core i9-10980XE • Vs Ryzen 9 5900 • Vs Ryzen Threadripper PRO 3945WX • Vs Ryzen 9 3950X • Vs Ryzen 9 5900X • Vs Ryzen Threadripper PRO 3955WX • Vs Ryzen 9 5950X • Vs Ryzen 7 5800H • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Core i9-10850K • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Ryzen 5 3600XT • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-10700 • Vs Core i7-10700F • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 4600H • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 2600X • Vs Core i7-8700K • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Core i7-10750H • Vs Ryzen 9 5980HX • Vs Apple M1X • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i7-11700K • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 7 Pro 5750G • Vs Ryzen Threadripper 2990WX • Vs Core i9-7980XE • Vs Ryzen 9 PRO 3900 • Vs Core i9-10940X • Vs Ryzen 9 3900 • Vs Ryzen Threadripper 2950X • Vs Ryzen Threadripper 2970WX • Vs Core i9-7940X • Vs Core i9-7960X • Vs Ryzen Threadripper 1950X • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i9-9920X • Vs Ryzen Threadripper 2920X • Vs Ryzen 9 5900HX • Vs Ryzen 7 5800 • Vs Xeon E5-2697R v4 • Vs Xeon W-1290T • Vs Xeon Gold 6246R • Vs Xeon Platinum 8260M • Vs Core i7-10870H • Vs Xeon W-3245 • Vs Xeon W-2275 • Vs Xeon Gold 6130T • Vs Xeon E5-2680R v4 • Vs Core i9-11900KF • Vs Core i9-11900 • Vs Core i9-11900F • Vs Core i9-11900T • Vs Core i7-11700KF • Vs Core i7-11700 • Vs Core i7-11700F • Vs Core i7-11700T • Vs Ryzen 7 3800XT • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Ryzen 7 PRO 3700 • Vs Core i5-11500 • Vs Core i5-11400 • Vs Ryzen Threadripper 1920X • Vs Ryzen 9 5600X • Vs Ryzen 7 5700U • Vs Ryzen 7 5800HS • Vs Core i9-10900KF • Vs Core i9-7920X • Vs Core i9-10910 • Vs Core i9-10900X • Vs Core i9-9900X • Vs Core i9-7900X • Vs Core i9-11900H • Vs Core i9-11900KB • Vs Core i9-11950H • Vs Core i9-11980HK • Vs Core i7-11700B • Vs Core i7-11850H • Vs Core i7-12650H • Vs Core i5-12600H • Vs Core i7-1270P • Vs Core i7-1280P • Vs Core i5-12450H • Vs Core i5-12500H • Vs Core i5-12400 • Vs Core i5-12400F • Vs Core i5-12400T • Vs Core i5-12500 • Vs Core i5-12500E • Vs Core i5-12600 • Vs Core i5-12600HE • Vs Core i5-12600T • Vs Core i3-12300HE • Vs Ryzen 5 PRO 6650H • Vs Ryzen 5 PRO 6650U • Vs Ryzen 5 PRO 6650HS • Vs Ryzen 9 6980HS • Vs Ryzen 9 6900HX • Vs Ryzen 9 6900HS • Vs Ryzen 9 6980HX • Vs Ryzen 7 6800H • Vs Ryzen 5 6600H • Vs Ryzen 7 6800HS • Vs Ryzen 5 6600HS • Vs Ryzen 7 6800U • Vs Ryzen 5 6600U • Vs Ryzen 7 Pro 5750GE • Vs Ryzen 7 5800X3D • Vs Core i5-12490F • Vs Core i7-1270PE • Vs Core i5-12500HL • Vs Core i5-12450HX • Vs Core i5-12600HL • Vs Core i5-12600HX • Vs Core i3-12300HL • Vs Ryzen 7 7700X • Vs Ryzen 5 7600X • Vs Core i3-N305 • Vs Apple M2 • Vs Apple M1 Pro • Vs Apple M1 Max • Vs Apple M2 Pro • Vs Apple M2 Max • Vs Core i7-13700HX • Vs Core i7-13700H • Vs Core i9-13900HK • Vs Core i9-13900HX • Vs Core i5-13600HX • Vs Core i9-13950HX • Vs Core i7-1360P • Vs Core i5-1350P • Vs Core i5-1340P • Vs Core i5-13500HX • Vs Core i9-13980HX • Vs Core i5-13600H • Vs Core i5-13500H • Vs Core i5-13505H • Vs Core i5-1345U • Vs Core i5-1335U • Vs Core i5-1334U • Vs Core i5-13420H • Vs Core i5-13450HX • Vs Core i7-1355U • Vs Core i7-1365U • Vs Core i3-1315U • Vs Core i3-1305U • Vs Core i7-1370P • Vs Core i7-13620H • Vs Core i7-13650HX • Vs Core i7-13705H • Vs Core i7-13800H • Vs Core i7-13850HX • Vs Core i9-13900H • Vs Core i9-13905H • Vs Ryzen 5 7645HX • Vs Ryzen 9 7940HS • Vs Ryzen 7 7840HS • Vs Ryzen 5 7640HS • Vs Ryzen 5 7535HS
| |
|