|
Intel Core i7-6900K vs AMD Ryzen 3 3100 |
|
Processor comparisons 25-03-2021 If you are thinking about choosing a processor, you will be able to make a decision by looking at the Intel Core i7-6900K vs AMD Ryzen 3 3100 tests and understand which is better for games or simple use for machine learning, streaming, programming, video editing, rendering. Here you can find useful information from real streaming and video editing tests or many benchmarks. A step-by-step analysis of all the technical characteristics, so that it can be easier to understand, is made by the table. From the comparison video, you can get the results of parallel examination in synthetic type tests such as Blender, PCMark 10, SuperPi, 7zip, PassMark, MATLAB, Cinebench 23 (20, 15), Furmark, WPrime, Dolphin Emulator, Prime95, DaVinci Resolve Studio, UserBenchmark, World of Tanks enCore Benchmark, Handbrake, VeraCrypt, Blender, 3DMark, Gears 5, RealBench, AIDA64, GeekBench 6, 5.2. Gaming performance of processors in: - Valorant
- Cyberpunk 2077
- World of Warcraft: Shadowlands
- Borderlands 3
- Rainbow Six Siege
- Assassin's Creed Valhalla
- Fallout 76
- Apex Legends
- Last Man Standing
- Grand Theft Auto V
- Fortnite
- Watch Dogs Legion
- Valheim
- Overwatch
- Red Dead Redemption 2
- Call of Duty: Warzone and Modern Warfare
- DOOM: Eternal
- Halo Infinite
- Death Stranding
After reading the results these benchmarks and videos, you already be able to understand which processor is better to buy for gaming AMD Ryzen 3 3100 or Intel Core i7-6900K.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i7-6900K | 54% |
Ryzen 3 3100 | 53% | This value shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Core i7-6900K is 1% better than Ryzen 3 3100. The data source is several popular tests. Detailed information can be found below.
Gaming performance Summary result of all game benchmarks.Core i7-6900K | 55% |
Ryzen 3 3100 | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And it is clear that this is a server processor, on which no one will play games. Because the cost of this processor reaches several tens of thousands of dollars. Therefore, if you think that the selected CPU has a low game result, look at the FPS that it produces in real games in the final table below. List of less popular games in which processors were compared: The Witcher 3: Wild Hunt, Monster Hunter World, NBA 2K20, Battlefield V, Horizon Zero Dawn, Ghostrunner, Microsoft Flight Simulator, Metro Exodus, League of Legends (LOL), Resident Evil 7 Biohazard, Counter-Strike: Global Offensive (CS GO), PlayerUnknown's Battlegrounds (PUBG), Forza Horizon 4, Shadow of the Tomb Raider, Control, DOTA 2A, Hitman 3, Half-Life: Alyx.
Gaming benchmarkFortnite | 97.2 | 93.7 | Valorant | 110.4 | 106.5 | Cyberpunk 2077 | 61.8 | 59.6 | Apex Legends | 103.8 | 100.1 | Call of Duty Warzone | 82.8 | 79.8 | Overwatch | 89.4 | 86.2 | Red Dead Redemption 2 | 76.2 | 73.5 | DOOM Eternal | 55.2 | 53.2 | Warzone | 86.1 | 83.0 | Assassin's Creed | 92.7 | 89.4 | Valheim | 91.6 | 88.4 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The tested computers not only did they have different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 2K, FullHD or 4K. So the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Core i7-6900K | 24% |
Ryzen 3 3100 | 64% | To make a final resolution on which processor is better, you should also consider the generation of its core. It is clear that the newer the generation, the better the performance of the processor in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 3 3100 is more energy efficient than the Core i7-6900K since it has less power consumption: 140W vs. 65W. Power consumption is especially important for laptops. And TDP should be taken into account when choosing a processor cooling system. It is necessary to calculate so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksLet's say you plan to use the processor not only for gaming, but also for machine learning, video rendering or video editing, streaming, programming, then the main parameter for you is its performance in multi-threaded mode. In this mode, the CPU turns on all threads and cores that it has to the maximum to achieve maximum efficiency. You will learn this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i7-6900K |
AMD Ryzen 3 3100 | Cinbench 15 Single-core | 207 | 179 | Cinbench 15 Multi-core | 1439 | 1019 | Cinbench 20 Single-core | 484 | 437 | Cinbench 20 Multi-core | 3668 | 2351 | Cinbench 23 Single-core | 1151 | 1105 | Cinbench 23 Multi-core | 11326 | 5423 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i7-6900K |
AMD Ryzen 3 3100 | Single-Core | 2405 | 2464 | Multi-Core | 13871 | 11783 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i7-6900K |
AMD Ryzen 3 3100 | Single-Core | 1016 | 1266 | Multi-Core | 8971 | 5567 |
Comparison of specifications
In the specification comparison table, the most helpful will be the the possibility of overclocking it and release date of the processor. The newer the processor, the longer it will last you. And the easier it will be to upgrade the system later. The same can be said about overclocking. If the processor can be overclocked, thereby increasing its performance, then it will still be able to produce maximum FPS in the newest games. The savings are obvious! Accordingly, you do not need to buy a new CPU to enjoy the games any longer.
| Intel Core i7-6900K |
AMD Ryzen 3 3100 | Announcement date | April 01, 2016 | May 27, 2020 | Type | Desktop | Desktop | Socket | FCLGA2011-3 | AM4 | Core name | Broadwell E | Matisse | Architecture | x86 | Zen 2 | Generation | 6 | 3 | Turbo Frequency | 3.7 MHz | 3.9 MHz | Frequency | 3.2 MHz | 3.6 MHz | Cores | 8 | 4 | Threads | 16 | 8 | Bus rate | | | Bit | 64 | 64 | Lithography | 14 nm | 7 nm | Transistors count | 2800 millions | 3800 millions | Power consumption (TDP) | 140 W | 65 W | Memory type | DDR4 2400/2133 | DDR4 | Max. Memory | 128 Gb | | Memory Frequency | | 3200 | Memory bandwidth | | | L1 cache | | 256KB | L2 cache | | 2MB | L3 cache | 20 MB | 16MB | Overclocking | No | Yes | Supports ECC | No | No | Part number | | 100-000000284 100-100000284BOX 100-100000284MPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 3 3100 is 11% better than Core i7-6900K in terms of CPU frequency. Another difference is that Core i7-6900K has 4 more core than Ryzen 3 3100. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i7-6900K is better: 24
The number of parameters for which AMD Ryzen 3 3100 is better: 12 However, it should be realized that all the number in the text above do not mean that you should be guided entirely by them and trust a simple comparison of these numbers. Better to watch benchmarks video and read the opinion of of people who bought Intel Core i7-6900K and AMD Ryzen 3 3100 before making a decision which processor to buy for gaming and which not.
Intel Core i7-6900K Processor Comparisons • Vs Core i9-9900T • Vs Core i7-8700K • Vs Core i5-10600 • Vs Ryzen 5 2600X • Vs Xeon W-2235 • Vs Ryzen 5 5500U • Vs Ryzen 5 4600HS • Vs Core i7-9700K • Vs Ryzen 7 2700E • Vs Ryzen 7 1700 • Vs Core i5-10600K • Vs Ryzen 5 5600U • Vs Core i7-8086K • Vs Core i7-9700KF • Vs Ryzen 5 PRO 4400GE • Vs Core i5-10600KF • Vs Ryzen 5 4600H • Vs Ryzen 7 PRO 2700 • Vs Core i9-10880H • Vs Ryzen 5 5600HS • Vs Ryzen 7 PRO 4750U • Vs Ryzen 7 2700 • Vs Ryzen 7 PRO 1700X • Vs Core i7-10875H • Vs Core i7-10870H • Vs Core i9-10885H • Vs Ryzen 7 1800X • Vs Ryzen 5 4600GE • Vs Ryzen 5 PRO 4650GE • Vs Ryzen 5 4600G • Vs Ryzen 5 4600U • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 2600E • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Core i5-10500 • Vs Ryzen 5 2600 • Vs Core i7-10700T • Vs Core i7-8700 • Vs Core i5-11300H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Core i7-11375H • Vs Ryzen 5 1600 • Vs Core i5-10600T • Vs Core i7-11370H • Vs Ryzen 3 4300GE • Vs Core i5-1145G7 • Vs Core i5-1140G7 • Vs Core i7-1185G7 • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Ryzen 3 PRO 4200GE • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Xeon W-11855M • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Core i3-1210U • Vs Ryzen 5 5625U • Vs Ryzen 3 5425U • Vs Core i9-9880H • Vs Core i9-9980HK • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i3-N300 • Vs Ryzen 5 5600 • Vs Core i5-13400T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Core i3-13300F • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X3D
AMD Ryzen 3 3100 Processor Comparisons • Vs Ryzen 5 1600 • Vs Core i5-10400 • Vs Core i5-10400F • Vs Core i7-10750H • Vs Core i7-8700 • Vs Ryzen 5 2600 • Vs Ryzen 5 3500X • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Core i7-8700K • Vs Ryzen 5 2600X • Vs Core i7-9700K • Vs Ryzen 5 4600H • Vs Core i7-10700 • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i7-7700K • Vs Core i5-9400F • Vs Ryzen 5 3400G • Vs Core i5-8400 • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Core i7-6700 • Vs Core i5-9300H • Vs Ryzen 5 3500U • Vs Core i7-4790 • Vs Core i7-10510U • Vs Core i7-4770 • Vs Core i7-7700HQ • Vs Core i5-10210U • Vs Core i7-6700HQ • Vs Core i7-3770 • Vs Core i5-8250U • Vs Core i7-8550U • Vs FX-8350 Eight-Core • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i5-8265U • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Core i7-4770K • Vs Ryzen 7 1700 • Vs Core i3-9100F • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Core i7-1160G7 • Vs Athlon Gold PRO 3150G • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i3-10300T • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i3-10325 • Vs Core i3-10305 • Vs Core i3-10105T • Vs Core i3-10105 • Vs Core i3-10105F • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-1130G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5500U • Vs Ryzen 3 5400U • Vs Core i9-9900T • Vs Core i7-9700F • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-10500T • Vs Ryzen 3 PRO 4450U • Vs Core i5-10400T • Vs Ryzen 5 3350GE • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Core i3-11100B • Vs Core i7-1068NG7 • Vs Ryzen 5 PRO 3350GE • Vs Ryzen 5 PRO 3350G • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i7-9850H • Vs Core i7-9700T • Vs Core i5-9500F • Vs Core i7-8700T • Vs Core i7-9700TE • Vs Core i5-9600 • Vs Core i5-9600KF • Vs Core i7-8700B • Vs Core i7-8850H • Vs Core i9-8950HK • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i7-6850K • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 5 7600 • Vs Core i9-13900F • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 5900 • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i7-5820K • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 4600GE
| |
|