|
Intel Xeon W-3175X vs AMD Ryzen 5 2600 |
|
Processor comparisons 17-03-2021 For example you can't decide which CPU to buy, you can make a choice by looking at the Intel Xeon W-3175X vs AMD Ryzen 5 2600 tests and understand which is better for games or normal use for streaming, programming, machine learning, video editing, rendering. Here is useful information from real streaming and video editing tests or various benchmarks. A thorough review of all the specifications, so that it can be easier to read, is made by the table. From the comparison video, you can get the results of parallel examination in synthetic type tests such as DaVinci Resolve Studio, VeraCrypt, Blender, Blender, SuperPi, Handbrake, GeekBench 6, 5.2, WPrime, MATLAB, Prime95, AIDA64, Cinebench 23 (20, 15), Dolphin Emulator, 3DMark, PCMark 10, 7zip, UserBenchmark, World of Tanks enCore Benchmark, PassMark, RealBench, Furmark, Gears 5. Gaming performance of CPUs in: - Borderlands 3
- Last Man Standing
- Death Stranding
- Apex Legends
- Call of Duty: Modern Warfare and Warzone
- Grand Theft Auto V
- Valheim
- Overwatch
- Halo Infinite
- Watch Dogs Legion
- Fallout 76
- Cyberpunk 2077
- World of Warcraft: Shadowlands
- Red Dead Redemption 2
- Fortnite
- DOOM: Eternal
- Rainbow Six Siege
- Assassin's Creed Valhalla
- Valorant
After reading the results these benchmarks and videos, you already be able to know which processor is better to buy for gaming AMD Ryzen 5 2600 or Intel Xeon W-3175X.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Xeon W-3175X | 59% |
Ryzen 5 2600 | 54% | This shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Xeon W-3175X is 8% better than Ryzen 5 2600. The data source is several popular tests. Detailed information can be found below.
Gaming performance Summary result of all game benchmarks.Xeon W-3175X | 65% |
Ryzen 5 2600 | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And it is clear that this is a server processor, on which no one will play games. Because the cost of this processor reaches several tens of thousands of dollars. Therefore, if you think that the selected CPU has a low game result, look at the FPS that it produces in real games in the final table below. List of other games in which CPU comparisons were performed: DOTA 2A, The Witcher 3: Wild Hunt, Horizon Zero Dawn, Control, Metro Exodus, NBA 2K20, Shadow of the Tomb Raider, Ghostrunner, Hitman 3, League of Legends (LOL), Monster Hunter World, Microsoft Flight Simulator, Counter-Strike: Global Offensive (CS GO), Forza Horizon 4, Half-Life: Alyx, Battlefield V, Resident Evil 7 Biohazard, PlayerUnknown's Battlegrounds (PUBG).
Gaming benchmarkFortnite | 116.1 | 94.8 | Valorant | 131.9 | 107.8 | Cyberpunk 2077 | 73.9 | 60.4 | Apex Legends | 124.0 | 101.3 | Call of Duty Warzone | 98.9 | 80.8 | Overwatch | 106.9 | 87.3 | Red Dead Redemption 2 | 91.0 | 74.4 | DOOM Eternal | 66.0 | 53.9 | Warzone | 102.9 | 84.1 | Assassin's Creed | 110.8 | 90.5 | Valheim | 109.5 | 89.5 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparing not only were the equipped with different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 2K, 4K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. You will get more accurate information about how powerful the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Xeon W-3175X | 17% |
Ryzen 5 2600 | 56% | To make a final resolution on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 5 2600 is more energy efficient than the Xeon W-3175X as it consumes less power: 255W vs. 65W. Power consumption is especially important for laptops. Also, when choosing a processor cooling system, you need to know its TDP. You need to buy a cooler that has the TDP data specified in the specification was greater than the TDP of the compared processor.
Software benchmarksFor example you plan to use the processor not only for gaming, but also for video rendering or video editing, streaming, machine learning, programming, then the main parameter for you is its performance in multi-threaded mode. In this mode, to reach maximum efficiency, the processor includes all cores and threads that it has. You will learn this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that use only one core to work, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Xeon W-3175X |
AMD Ryzen 5 2600 | Cinbench 15 Single-core | 188 | 164 | Cinbench 15 Multi-core | 5514 | 1310 | Cinbench 20 Single-core | 417 | 374 | Cinbench 20 Multi-core | 12975 | 2736 | Cinbench 23 Single-core | 1112 | 1024 | Cinbench 23 Multi-core | 31350 | 7220 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Xeon W-3175X |
AMD Ryzen 5 2600 | Single-Core | 2147 | 2280 | Multi-Core | 31909 | 13255 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Xeon W-3175X |
AMD Ryzen 5 2600 | Single-Core | 1351 | 1104 | Multi-Core | 27550 | 6712 |
Comparison of specifications
In the specification comparison table, the most useful will be the release date of the processor and the possibility of overclocking it. The later the processor is released, the longer it will last you. And the easier it will be to upgrade the system in the future. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will still be able to produce maximum FPS in new games. Accordingly, there is no longer a need to buy a new CPU to enjoy the games any longer. The economy are obvious!
| Intel Xeon W-3175X |
AMD Ryzen 5 2600 | Announcement date | January 01, 2019 | April 19, 2018 | Type | Desktop | Desktop | Socket | FCLGA3647 | AM4 | Core name | Skylake | Pinnacle Ridge | Architecture | x86 | Zen+ | Generation | 2 | 2 | Turbo Frequency | 3.8 MHz | 3.9 MHz | Frequency | 3.1 MHz | 3.4 MHz | Cores | 28 | 6 | Threads | 56 | 12 | Bus rate | 8 GT/s | 4 × 8 GT/s | Bit | 64 | 64 | Lithography | 14 nm | 12 nm | Transistors count | 7510 millions | 3600 millions | Power consumption (TDP) | 255 W | 65 W | Memory type | DDR4-2666 | DDR4 | Max. Memory | 512 Gb | | Memory Frequency | | 2933 | Memory bandwidth | | | L1 cache | | 576KB | L2 cache | | 3MB | L3 cache | 38.5 MB | 16MB | Overclocking | Yes | Yes | Supports ECC | Yes | No | Part number | | YD2600BBM6IAF YD2600BBAFBOX YD2600BBAFMPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 2600 is 8% better than Xeon W-3175X in terms of CPU frequency. Another difference is that Xeon W-3175X has 22 more core than Ryzen 5 2600. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Xeon W-3175X is better: 28
The number of parameters for which AMD Ryzen 5 2600 is better: 8 However, it should be realized that the summary data in the text above do not mean that you should be guided entirely by them and trust a simple comparison of these figures. Be sure to watch the testing video and read the reviews of of people who bought Intel Xeon W-3175X and AMD Ryzen 5 2600 before making a choice which of the CPUs to buy for gaming.
Intel Xeon W-3175X Processor Comparisons • Vs Core i9-9980XE • Vs Ryzen 9 3900X • Vs Ryzen 9 3900XT • Vs Core i9-10980XE • Vs Ryzen 9 3950X • Vs Ryzen 9 5900X • Vs Ryzen Threadripper PRO 3955WX • Vs Ryzen 9 5950X • Vs Ryzen Threadripper 3960X • Vs Ryzen Threadripper PRO 3975WX • Vs Core i9-9990XE • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Core i9-10850K • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Ryzen 5 3600XT • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-10700 • Vs Core i7-10700F • Vs Core i7-10875H • Vs Ryzen 7 2700 • Vs Ryzen 5 4600H • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-9700K • Vs Ryzen 5 2600X • Vs Core i7-8700K • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Core i7-8700 • Vs Ryzen Threadripper PRO 3945WX • Vs Core i9-9960X • Vs Ryzen 9 5900 • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Apple M1X • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i7-11700K • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 7 Pro 5750G • Vs Ryzen Threadripper 2990WX • Vs Core i9-7980XE • Vs Ryzen 9 PRO 3900 • Vs Core i9-10940X • Vs Ryzen 9 3900 • Vs Ryzen Threadripper 2950X • Vs Ryzen Threadripper 2970WX • Vs Core i9-7940X • Vs Core i9-7960X • Vs Ryzen Threadripper 1950X • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i9-9920X • Vs Ryzen Threadripper 2920X • Vs Ryzen 9 5900HX • Vs Xeon Gold 6242R • Vs Xeon Gold 6246R • Vs EPYC 7502 • Vs Xeon Platinum 8260M • Vs Xeon W-3245 • Vs Xeon W-2275 • Vs Core i9-11900KF • Vs Core i9-11900 • Vs Core i9-11900F • Vs Core i7-11700KF • Vs Core i7-11700 • Vs Ryzen 9 5800 • Vs Ryzen 9 5600X • Vs Ryzen 9 5800X • Vs EPYC 7742 • Vs EPYC 7513 • Vs EPYC 7543 • Vs EPYC 7543P • Vs EPYC 75F3 • Vs EPYC 7713 • Vs EPYC 7663 • Vs EPYC 7643 • Vs EPYC 7763 • Vs EPYC 7713P • Vs EPYC 7453 • Vs EPYC 74F3 • Vs EPYC 7443P • Vs EPYC 7443 • Vs EPYC 7413 • Vs EPYC 73F3 • Vs EPYC 7343 • Vs EPYC 7313P • Vs EPYC 7313 • Vs EPYC 72F3 • Vs Xeon W-3275M • Vs EPYC 7452 • Vs Xeon Gold 6248R • Vs Core i9-11900H • Vs Core i9-11900KB • Vs Core i9-11950H • Vs Core i9-11980HK • Vs Core i7-11700B • Vs EPYC 7272 • Vs Core i9-13900K • Vs Core i7-12800H • Vs Core i7-12650H • Vs Core i7-12700E • Vs Core i7-12700 • Vs Core i7-12700F • Vs Core i7-12700TE • Vs Core i7-12700T • Vs Core i7-12700HE • Vs Core i7-12700K • Vs Core i7-12700KF • Vs Core i5-12600HE • Vs Core i5-12600KF • Vs Core i5-12600K • Vs Ryzen 7 PRO 6850U • Vs Ryzen 9 PRO 6950H • Vs Ryzen 5 PRO 6650H • Vs Ryzen 9 PRO 6950HS • Vs Ryzen 7 PRO 6850H • Vs Ryzen 7 PRO 6850HS • Vs Ryzen 5 PRO 6650HS • Vs Ryzen 9 6980HS • Vs Ryzen 7 5800X3D • Vs Core i7-12700HL • Vs Core i7-12650HX • Vs Core i7-12800HL • Vs Core i7-12850HX • Vs Core i3-13100 • Vs Core i5-13400 • Vs Apple M2 • Vs Apple M1 Pro • Vs Apple M1 Max • Vs Apple M2 Pro • Vs Core i7-13700HX • Vs Core i7-13700H • Vs Core i9-13700HK • Vs Core i9-13900HK
AMD Ryzen 5 2600 Processor Comparisons • Vs Ryzen 9 5900X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-8700K • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-7700HQ • Vs Core i7-4790K • Vs Core i9-10850K • Vs Ryzen 5 2600X • Vs Core i7-6700K • Vs Ryzen 5 1600 • Vs Ryzen 5 3500U • Vs Core i5-9400F • Vs Core i7-8700 • Vs Ryzen 5 3400G • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-4790 • Vs Core i7-7700K • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-9600K • Vs Core i7-4770 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Core i7-10510U • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Core i9-9960X • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i9-13900F • Vs Core i7-13700T • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 5900 • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i3-6100 • Vs Core i5-6500T • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Core i7-5820K • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 5645 • Vs Ryzen 3 PRO 5350G • Vs Ryzen 5 PRO 4655G • Vs Core i5-13490F • Vs Ryzen 7 7800X3D • Vs Ryzen 3 PRO 4355G • Vs Ryzen 3 PRO 4355GE • Vs Ryzen 5 7600X
| |
|