|
Intel Core i5-1145G7E vs AMD Ryzen 5 2600 |
|
Processor comparisons 19-03-2021 Perhaps you are thinking about choosing a processor, you will be able to make a decision after reading the comprehensive tests Intel Core i5-1145G7E vs AMD Ryzen 5 2600 and decide which is better for games or simple use for programming, rendering, streaming, machine learning, video editing. Here is useful information from several benchmarks or real video editing and streaming tests. A thorough review of all the specifications, to make it easier to understand, is summarized in the table. From the video comparison, you can get the results of parallel examination in special testing software like Furmark, PassMark, RealBench, MATLAB, AIDA64, GeekBench 6, 5.2, Gears 5, World of Tanks enCore Benchmark, UserBenchmark, Blender, PCMark 10, Prime95, Dolphin Emulator, WPrime, SuperPi, VeraCrypt, 7zip, Cinebench 23 (20, 15), Blender, Handbrake, DaVinci Resolve Studio, 3DMark. And how good the processors are in games: - Grand Theft Auto V
- Watch Dogs Legion
- Death Stranding
- Call of Duty: Modern Warfare and Warzone
- Valheim
- Rainbow Six Siege
- Borderlands 3
- World of Warcraft: Shadowlands
- Fortnite
- Overwatch
- DOOM: Eternal
- Fallout 76
- Red Dead Redemption 2
- Apex Legends
- Assassin's Creed Valhalla
- Valorant
- Cyberpunk 2077
- Last Man Standing
- Halo Infinite
After reading the results of all benchmarks and videos, you can already make an briefed decision about which CPU is better to buy for gaming AMD Ryzen 5 2600 or Intel Core i5-1145G7E.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i5-1145G7E | 53% |
Ryzen 5 2600 | 54% | This shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Ryzen 5 2600 is 1% better than Core i5-1145G7E. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Core i5-1145G7E | 52% |
Ryzen 5 2600 | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And it is clear that this is a server processor, on which no one will play games. Because the cost of this processor reaches several tens of thousands of dollars. Therefore, if you think that the selected CPU has a low game result, look at the FPS that it produces in real games in the final table below. List of other games in which CPU comparisons were performed: Resident Evil 7 Biohazard, Counter-Strike: Global Offensive (CS GO), Metro Exodus, Forza Horizon 4, The Witcher 3: Wild Hunt, League of Legends (LOL), Ghostrunner, Horizon Zero Dawn, Half-Life: Alyx, Hitman 3, Microsoft Flight Simulator, Battlefield V, NBA 2K20, PlayerUnknown's Battlegrounds (PUBG), DOTA 2A, Monster Hunter World, Control, Shadow of the Tomb Raider.
Gaming benchmarkFortnite | 92.5 | 94.8 | Valorant | 105.1 | 107.8 | Cyberpunk 2077 | 58.8 | 60.4 | Apex Legends | 98.8 | 101.3 | Call of Duty Warzone | 78.8 | 80.8 | Overwatch | 85.1 | 87.3 | Red Dead Redemption 2 | 72.5 | 74.4 | DOOM Eternal | 52.5 | 53.9 | Warzone | 82.0 | 84.1 | Assassin's Creed | 88.3 | 90.5 | Valheim | 87.2 | 89.5 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The tested computers not only did they have different video cards and different amounts of RAM. But users also tested them at different screen resolutions: FullHD, 2K or 4K. So the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Core i5-1145G7E | 285% |
Ryzen 5 2600 | 56% | To make a final decision on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Core i5-1145G7E is more energy efficient than the Ryzen 5 2600 as it consumes less power: 15W vs. 65W. Power consumption is particularly important for laptops. Also, when choosing a processor cooling system, it will be useful to know its TDP. It is necessary to count so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksIf you want to use the processor not only for gaming, but also for machine learning, programming, streaming, video rendering or video editing, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, to reach maximum performance, the processor includes all threads and cores that it has. You will find out this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Because there are still many programs that use only one core to work, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i5-1145G7E |
AMD Ryzen 5 2600 | Cinbench 15 Single-core | 164 | 164 | Cinbench 15 Multi-core | 1160 | 1310 | Cinbench 20 Single-core | 389 | 374 | Cinbench 20 Multi-core | 2766 | 2736 | Cinbench 23 Single-core | 960 | 1024 | Cinbench 23 Multi-core | 6584 | 7220 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i5-1145G7E |
AMD Ryzen 5 2600 | Single-Core | 2746 | 2280 | Multi-Core | 10819 | 13255 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i5-1145G7E |
AMD Ryzen 5 2600 | Single-Core | 1284 | 1104 | Multi-Core | 4384 | 6712 |
Comparison of specifications
In the specification comparison table, the most helpful will be the release date of the processor and the possibility of overclocking it. The newer the processor, the longer it will last in your computer. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will continue to maintain maximum FPS in the newest games. The economy are obvious! It turns out that you do not need to buy a new CPU to enjoy the games any longer.
| Intel Core i5-1145G7E |
AMD Ryzen 5 2600 | Announcement date | September 27, 2020 | April 19, 2018 | Type | Embedded System | Desktop | Socket | FCBGA1449 | AM4 | Core name | Tiger Lake | Pinnacle Ridge | Architecture | x86 | Zen+ | Generation | 11 | 2 | Turbo Frequency | 4.1 MHz | 3.9 MHz | Frequency | 1.5 MHz | 3.4 MHz | Cores | 4 | 6 | Threads | 8 | 12 | Bus rate | 4 GT/s | 4 × 8 GT/s | Bit | 64 | 64 | Lithography | 10 nm | 12 nm | Transistors count | 5400 millions | 3600 millions | Power consumption (TDP) | 15 W | 65 W | Memory type | DDR4-3200, LPDDR4x-4267, In-Band ECC | DDR4 | Max. Memory | 64 Gb | | Memory Frequency | | 2933 | Memory bandwidth | | | L1 cache | | 576KB | L2 cache | | 3MB | L3 cache | 8 MB | 16MB | Overclocking | No | Yes | Supports ECC | Yes | No | Part number | | YD2600BBM6IAF YD2600BBAFBOX YD2600BBAFMPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 2600 is 55% better than Core i5-1145G7E in terms of CPU frequency. Another difference is that Ryzen 5 2600 has 2 more core than Core i5-1145G7E. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i5-1145G7E is better: 13
The number of parameters for which AMD Ryzen 5 2600 is better: 24 The summary data in the article above do not mean that taking them into account you should fully trust a simple quantitative comparison. Be sure to watch the video tests and read the opinion of of people who bought Intel Core i5-1145G7E and AMD Ryzen 5 2600 before making a decision which of the processors to buy for gaming.
Intel Core i5-1145G7E Processor Comparisons • Vs Core i5-1145GRE • Vs Core i5-9600K • Vs Ryzen 3 PRO 4200GE • Vs Core i7-9750H • Vs Ryzen 5 4500U • Vs Core i7-1160G7 • Vs Core i5-1145G7 • Vs Ryzen 3 3100 • Vs Ryzen 3 4300GE • Vs Core i5-10600T • Vs Ryzen 5 1600 • Vs Core i5-10400 • Vs Core i5-10400F • Vs Core i7-10750H • Vs Core i7-9700E • Vs Ryzen 3 3300X • Vs Core i7-8700 • Vs Core i7-10700T • Vs Core i5-10500 • Vs Ryzen 5 3500X • Vs Core i7-9700 • Vs Ryzen 5 PRO 2600 • Vs Ryzen 7 4700U • Vs Ryzen 5 4600U • Vs Core i7-8700K • Vs Core i5-10600 • Vs Ryzen 5 2600X • Vs Xeon W-2235 • Vs Ryzen 5 4600HS • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i3-10320 • Vs Core i5-1135G7 • Vs Core i7-7700K • Vs Core i5-9400F • Vs Core i5-9400 • Vs Ryzen 5 3400G • Vs Ryzen 5 3350G • Vs Core i5-8400 • Vs Core i3-10325 • Vs Core i5-10200H • Vs Core i7-6700K • Vs Core i3-10105 • Vs Core i7-1065G7 • Vs Core i3-10305 • Vs Core i3-10100 • Vs Core i3-10100F • Vs Core i3-10105F • Vs Core i5-10300H • Vs Core i3-10105T • Vs Ryzen 5 2400G • Vs Core i7-7700 • Vs Core i3-10305T • Vs Core i3-10300T • Vs Ryzen 5 3550H • Vs Core i7-4790K • Vs Core i7-6700 • Vs Core i5-1035G1 • Vs Core i5-9300H • Vs Core i5-1140G7 • Vs Core i5-1130G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 3 5400U • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-10500T • Vs Ryzen 3 PRO 4450U • Vs Core i5-10400T • Vs Ryzen 5 3350GE • Vs Core i7-1195G7 • Vs Core i3-11100B • Vs Core i7-1068NG7 • Vs Ryzen 5 PRO 3350GE • Vs Ryzen 5 PRO 3350G • Vs Xeon E-2234 • Vs Ryzen 5 3400GE • Vs Core i7-10810U • Vs Core i3-10300 • Vs Ryzen 3 5425U • Vs Core i5-1038NG7 • Vs Core i5-9500TE • Vs Core i7-9750HF • Vs Core i7-10710U • Vs Core i7-9850H • Vs Core i7-9700T • Vs Core i5-8500 • Vs Core i5-9500F • Vs Core i7-8700T • Vs Core i7-9700TE • Vs Core i5-9500 • Vs Core i5-9600 • Vs Core i5-9600KF • Vs Core i7-8700B • Vs Core i5-8600 • Vs Core i7-8850H • Vs Core i9-8950HK • Vs Core i5-8600K • Vs Core i7-6850K
AMD Ryzen 5 2600 Processor Comparisons • Vs Ryzen 9 5900X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-8700K • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-7700HQ • Vs Core i7-4790K • Vs Core i9-10850K • Vs Ryzen 5 2600X • Vs Core i7-6700K • Vs Ryzen 5 1600 • Vs Ryzen 5 3500U • Vs Core i5-9400F • Vs Core i7-8700 • Vs Ryzen 5 3400G • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-4790 • Vs Core i7-7700K • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-9600K • Vs Core i7-4770 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Core i7-10510U • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Xeon W-3175X • Vs Core i9-9960X • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i9-13900F • Vs Core i7-13700T • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 5900 • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i3-6100 • Vs Core i5-6500T • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Core i7-5820K • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 5645 • Vs Ryzen 3 PRO 5350G • Vs Ryzen 5 PRO 4655G • Vs Core i5-13490F • Vs Ryzen 7 7800X3D • Vs Ryzen 3 PRO 4355G • Vs Ryzen 3 PRO 4355GE • Vs Ryzen 5 7600X
| |
|