|
Intel Core i7-10510U vs AMD Ryzen 5 2600 |
|
Processor comparisons 17-03-2021 For example you have difficulties with the choice of a processor, you will solve them by reading the comprehensive tests Intel Core i7-10510U vs AMD Ryzen 5 2600 and decide which is better for games or simple use for machine learning, streaming, rendering, programming, video editing. Here is useful information from various benchmarks or real streaming and video editing tests. A thorough review of all the specifications, so that it can be easier to read, is presented in the form of the table. From the video comparison, you can get the results of parallel examination in software tests such as DaVinci Resolve Studio, Cinebench 23 (20, 15), 3DMark, AIDA64, Furmark, World of Tanks enCore Benchmark, VeraCrypt, SuperPi, Handbrake, Blender, 7zip, Blender, WPrime, UserBenchmark, Dolphin Emulator, MATLAB, PassMark, PCMark 10, RealBench, GeekBench 6, 5.2, Prime95, Gears 5. Gaming performance of CPUs in: - World of Warcraft: Shadowlands
- Cyberpunk 2077
- Red Dead Redemption 2
- Assassin's Creed Valhalla
- Grand Theft Auto V
- Watch Dogs Legion
- Valheim
- Death Stranding
- DOOM: Eternal
- Rainbow Six Siege
- Fallout 76
- Apex Legends
- Halo Infinite
- Call of Duty: Modern Warfare and Warzone
- Last Man Standing
- Valorant
- Borderlands 3
- Overwatch
- Fortnite
After looking at the data of all benchmarks and videos, you already be able to understand which processor is better to buy for gaming AMD Ryzen 5 2600 or Intel Core i7-10510U.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i7-10510U | 52% |
Ryzen 5 2600 | 54% | This parameter shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Ryzen 5 2600 is 3% better than Core i7-10510U. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Core i7-10510U | 52% |
Ryzen 5 2600 | 53% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor at the moment. And of course, this is a server processor, on which no one will play games. Because the cost of this processor reaches several tens of thousands of dollars. And if it seems to you that the selected CPU has a small game result, look at the FPS that it produces in real games in the summary table below. List of other games in which processors were compared: Resident Evil 7 Biohazard, Battlefield V, Forza Horizon 4, PlayerUnknown's Battlegrounds (PUBG), Horizon Zero Dawn, Ghostrunner, Shadow of the Tomb Raider, League of Legends (LOL), The Witcher 3: Wild Hunt, NBA 2K20, Metro Exodus, Control, Monster Hunter World, DOTA 2A, Microsoft Flight Simulator, Counter-Strike: Global Offensive (CS GO), Half-Life: Alyx, Hitman 3.
Gaming benchmarkFortnite | 92.3 | 94.8 | Valorant | 104.9 | 107.8 | Cyberpunk 2077 | 58.8 | 60.4 | Apex Legends | 98.6 | 101.3 | Call of Duty Warzone | 78.7 | 80.8 | Overwatch | 85.0 | 87.3 | Red Dead Redemption 2 | 72.4 | 74.4 | DOOM Eternal | 52.5 | 53.9 | Warzone | 81.8 | 84.1 | Assassin's Creed | 88.1 | 90.5 | Valheim | 87.1 | 89.5 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The tested computers not only did they have different video cards and different amounts of RAM. But users also tested them at different screen resolutions: FullHD, 2K or 4K. So the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you compare it in one assembly with the video card that is installed in your computer.
Power consumption
Core i7-10510U | 270% |
Ryzen 5 2600 | 56% | To make a final resolution on which processor is better, you should also consider the generation of its core. It is clear that the newer the generation, the better the performance of the processor in games and benchmarks, as well as its energy efficiency. In this case the Core i7-10510U is more energy efficient than the Ryzen 5 2600 since it has less power consumption: 15W vs. 65W. Power consumption is especially important for laptops. And TDP should be taken into account when choosing a processor cooling system. It is necessary to calculate so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksLet's say you want to use the processor not only for gaming, but also for programming, streaming, video rendering or video editing, machine learning, then the main parameter for you is its performance in multi-threaded mode. In this mode, to reach maximum performance, the CPU turns on all cores and threads that it has. You will learn this data from the benchmark tables below. Before you take into account the data from these tests, be sure to find out whether the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that use only one core to work, and all the benefit of multi-core mode turns out to be unnecessary. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i7-10510U |
AMD Ryzen 5 2600 | Cinbench 15 Single-core | 188 | 164 | Cinbench 15 Multi-core | 758 | 1310 | Cinbench 20 Single-core | 471 | 374 | Cinbench 20 Multi-core | 1523 | 2736 | Cinbench 23 Single-core | 1102 | 1024 | Cinbench 23 Multi-core | 3271 | 7220 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i7-10510U |
AMD Ryzen 5 2600 | Single-Core | 2452 | 2280 | Multi-Core | 7011 | 13255 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i7-10510U |
AMD Ryzen 5 2600 | Single-Core | 1215 | 1104 | Multi-Core | 4248 | 6712 |
Comparison of specifications
In the specification comparison table, the most helpful will be the the possibility of overclocking it and release date of the processor. The newer the processor, the longer it will last you. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. If the processor can be overclocked, thereby increasing its performance, then it will continue to maintain maximum FPS in new games. The economy are obvious! It turns out that there is no longer a need to buy a new CPU to enjoy the games any longer.
| Intel Core i7-10510U |
AMD Ryzen 5 2600 | Announcement date | April 01, 2019 | April 19, 2018 | Type | Laptop | Desktop | Socket | FCBGA1528 | AM4 | Core name | Comet Lake | Pinnacle Ridge | Architecture | x86 | Zen+ | Generation | 10 | 2 | Turbo Frequency | 4.9 MHz | 3.9 MHz | Frequency | 1.8 MHz | 3.4 MHz | Cores | 4 | 6 | Threads | 8 | 12 | Bus rate | 4 GT/s | 4 × 8 GT/s | Bit | 64 | 64 | Lithography | 14 nm | 12 nm | Transistors count | 6800 millions | 3600 millions | Power consumption (TDP) | 15 W | 65 W | Memory type | DDR4-2666, LPDDR3-2133, LPDDR4-2933 | DDR4 | Max. Memory | 64 Gb | | Memory Frequency | | 2933 | Memory bandwidth | 45.8 GB/s | | L1 cache | | 576KB | L2 cache | | 3MB | L3 cache | 8 MB | 16MB | Overclocking | Yes | Yes | Supports ECC | No | No | Part number | | YD2600BBM6IAF YD2600BBAFBOX YD2600BBAFMPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 2600 is 47% better than Core i7-10510U in terms of CPU frequency. Another difference is that Ryzen 5 2600 has 2 more core than Core i7-10510U. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i7-10510U is better: 13
The number of parameters for which AMD Ryzen 5 2600 is better: 24 Although it should be understood that all the number in the article above do not mean that taking them into account you should undividedly trust a simple quantitative comparison. Better to watch the testing video and read the opinion of of people who bought Intel Core i7-10510U and AMD Ryzen 5 2600 before deciding which CPU to buy for gaming and which not.
Intel Core i7-10510U Processor Comparisons • Vs Core i7-4790 • Vs Ryzen 5 3500U • Vs Core i5-9300H • Vs Core i7-6700 • Vs Core i7-4790K • Vs Ryzen 5 2400G • Vs Core i7-1065G7 • Vs Core i7-6700K • Vs Core i5-8400 • Vs Ryzen 5 3400G • Vs Core i5-9400F • Vs Core i7-7700K • Vs Core i7-8750H • Vs Core i7-1165G7 • Vs Core i5-9600K • Vs Core i7-9750H • Vs Ryzen 5 1600 • Vs Core i5-10400 • Vs Core i5-10400F • Vs Core i7-10750H • Vs Core i7-8700 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Core i7-4770 • Vs Core i7-7700HQ • Vs Core i5-10210U • Vs Core i7-6700HQ • Vs Core i7-3770 • Vs Core i5-8250U • Vs FX-8350 Eight-Core • Vs Core i5-6500 • Vs Core i5-3470 • Vs Core i7-2600 • Vs Ryzen 7 4700U • Vs Core i5-4590 • Vs Ryzen 5 3500X • Vs Core i7-8550U • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-4570 • Vs Core i5-2400 • Vs Core i5-4460 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i5-1135G7 • Vs Core i5-8265U • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs FX-6300 Six-Core • Vs Core i5-7400 • Vs Core i7-4770K • Vs Core i5-7300HQ • Vs Core i3-9100F • Vs Core i7-7500U • Vs Core i5-3570K • Vs Core i5-6400 • Vs Core i5-9400 • Vs Core i7-3630QM • Vs Core i7-8565U • Vs Core i3-1005G1 • Vs Core i7-3770K • Vs Ryzen 5 3550H • Vs Pentium Gold 7505 • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Core i7-1160G7 • Vs Athlon Gold PRO 3150G • Vs Core i3-10320 • Vs Pentium Gold G6500 • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Core i3-9100TE • Vs Ryzen 5 3450U • Vs Core i5-10200H • Vs Core i3-1115G4 • Vs Core i3-10300T • Vs Athlon Gold PRO 3150GE • Vs Core i3-9350K • Vs Core i5-9300HF • Vs Ryzen 5 3550U • Vs Core i3-10305 • Vs Core i3-10305T • Vs Core i3-10105T • Vs Core i3-10105 • Vs Core i3-10105F • Vs Pentium Gold G6605 • Vs Pentium Gold G6505 • Vs Core i3-1110G4 • Vs Core i3-1115GRE • Vs Core i3-1115G4E • Vs Core i3-1120G4 • Vs Core i3-1125G4 • Vs Athlon 300GE • Vs Athlon 320GE • Vs Ryzen 5 3500C • Vs Ryzen 7 3700C • Vs Ryzen 3 5300U • Vs Ryzen 3 3350U • Vs Core i5-1030NG7 • Vs Core i3-10100T • Vs Core i5-8260U • Vs Ryzen 5 3580U • Vs Core i7-10610U • Vs Core i7-10510Y • Vs Core i5-10310U • Vs Core i7-8565UC • Vs Core i7-1060NG7 • Vs Core i5-9400T • Vs Core i7-8557U • Vs Core i7-8665UE • Vs Core i5-8257U • Vs Core i5-8265UC • Vs Core i5-8279U • Vs Core i3-9320 • Vs Core i7-7820EQ • Vs Core i3-9300 • Vs Core i7-8705G • Vs Core i3-8300 • Vs Core i3-9100 • Vs Core i7-8665U • Vs Core i5-8365U • Vs Core i3-9300T • Vs Core i3-9350KF • Vs Core i3-8100B • Vs Core i5-8305G • Vs Core i7-5850EQ • Vs Core i5-8400T • Vs Core i3-8300T • Vs Core i3-8350K • Vs Core i7-8650U • Vs Ryzen 7 3750H • Vs Core i7-6500U • Vs Core i9-9880H • Vs Ryzen 7 5825C • Vs Ryzen 3 5425C • Vs Qualcomm Snapdragon 7c • Vs Athlon Silver 7120U
AMD Ryzen 5 2600 Processor Comparisons • Vs Ryzen 9 5900X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 5 3600 • Vs Ryzen 7 2700X • Vs Core i7-8700K • Vs Ryzen 5 PRO 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i7-7700HQ • Vs Core i7-4790K • Vs Core i9-10850K • Vs Ryzen 5 2600X • Vs Core i7-6700K • Vs Ryzen 5 1600 • Vs Ryzen 5 3500U • Vs Core i5-9400F • Vs Core i7-8700 • Vs Ryzen 5 3400G • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-4790 • Vs Core i7-7700K • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-9600K • Vs Core i7-4770 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Ryzen 5 3550H • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Xeon W-3175X • Vs Core i9-9960X • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs Core i5-10200H • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600T • Vs Core i5-11500T • Vs Core i5-11400T • Vs Core i3-10325 • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 3 5400U • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 PRO 4350G • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-1195G7 • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Ryzen 3 5425U • Vs Core i7-9750HF • Vs Core i9-9880H • Vs Core i7-9850H • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 7 7700 • Vs Ryzen 5 7600 • Vs Core i9-13900F • Vs Core i7-13700T • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 5900 • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i3-6100 • Vs Core i5-6500T • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Core i7-5820K • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 5645 • Vs Ryzen 3 PRO 5350G • Vs Ryzen 5 PRO 4655G • Vs Core i5-13490F • Vs Ryzen 7 7800X3D • Vs Ryzen 3 PRO 4355G • Vs Ryzen 3 PRO 4355GE • Vs Ryzen 5 7600X
| |
|