|
Intel Core i5-10600K vs AMD Ryzen 7 4800H |
|
Processor comparisons 17-03-2021 If you can't decide which CPU to buy, you can make a choice after reading the full tests Intel Core i5-10600K vs AMD Ryzen 7 4800H and understand which is better for games or normal use for streaming, machine learning, rendering, programming, video editing. Here is useful information from several benchmarks or real streaming and video editing tests. A careful analysis of all the technical characteristics, to make it easier to read, is made by the table. From the video comparison, you can get the results of joint testing in special test applications like DaVinci Resolve Studio, VeraCrypt, Blender, SuperPi, Gears 5, RealBench, GeekBench 6, 5.2, PCMark 10, Handbrake, MATLAB, Furmark, Dolphin Emulator, AIDA64, PassMark, Blender, World of Tanks enCore Benchmark, UserBenchmark, Prime95, 7zip, Cinebench 23 (20, 15), WPrime, 3DMark. Gaming performance of processors in: - Assassin's Creed Valhalla
- Red Dead Redemption 2
- Fallout 76
- Valorant
- Borderlands 3
- Watch Dogs Legion
- Valheim
- Last Man Standing
- Fortnite
- Halo Infinite
- DOOM: Eternal
- Apex Legends
- Rainbow Six Siege
- Overwatch
- Cyberpunk 2077
- Grand Theft Auto V
- Death Stranding
- Call of Duty: Warzone and Modern Warfare
- World of Warcraft: Shadowlands
After reading the results of parallel benchmarks and videos, you already be able to understand which processor is better to buy for gaming AMD Ryzen 7 4800H or Intel Core i5-10600K.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i5-10600K | 54% |
Ryzen 7 4800H | 55% | The number of this parameter shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Ryzen 7 4800H is 1% better than Core i5-10600K. The data source is several popular tests. More detailed information of the benchmarks is below.
Gaming performance Summary result of all game benchmarks.Core i5-10600K | 55% |
Ryzen 7 4800H | 54% | The maximum result in this parameter is 100 percent, which is the performance of the most powerful processor currently available. And it is clear that this is a server processor, on which no one will run games. Because this processor costs several tens of thousands of dollars. Therefore, if you think that the selected CPU has a little game result, just look at the FPS that it produces in real games in the final table below. List of less popular games in which processors were compared: Metro Exodus, Horizon Zero Dawn, NBA 2K20, Forza Horizon 4, League of Legends (LOL), Ghostrunner, DOTA 2A, Control, Half-Life: Alyx, Hitman 3, Battlefield V, The Witcher 3: Wild Hunt, PlayerUnknown's Battlegrounds (PUBG), Monster Hunter World, Microsoft Flight Simulator, Counter-Strike: Global Offensive (CS GO), Resident Evil 7 Biohazard, Shadow of the Tomb Raider.
Gaming benchmarkFortnite | 97.0 | 96.5 | Valorant | 110.2 | 109.7 | Cyberpunk 2077 | 61.7 | 61.4 | Apex Legends | 103.6 | 103.1 | Call of Duty Warzone | 82.7 | 82.3 | Overwatch | 89.3 | 88.9 | Red Dead Redemption 2 | 76.1 | 75.7 | DOOM Eternal | 55.1 | 54.9 | Warzone | 86.0 | 85.6 | Assassin's Creed | 92.6 | 92.2 | Valheim | 91.5 | 91.1 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparisons not only were the equipped with different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 4K, 2K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
Core i5-10600K | 39% |
Ryzen 7 4800H | 88% | To make a finishing resolution on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Ryzen 7 4800H is more energy efficient than the Core i5-10600K as it consumes less power: 125W vs. 45W. Power consumption is particularly important for laptops. And TDP should be taken into account when choosing a processor cooling system. It is necessary to count so that the TDP data specified in the cooler specification is greater than the TDP of the compared processor.
Software benchmarksFor example you plan to use the processor not only for gaming, but also for video editing or video rendering, machine learning, programming, streaming, then the main parameter for you is its performance in multi-threaded mode. In this mode, the CPU turns on all cores and threads that it has to the maximum to achieve maximum efficiency. You will learn this data from the benchmark tables below. Before you take into account the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Since there are still many programs that can use only one core to work, and all the benefit of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i5-10600K |
AMD Ryzen 7 4800H | Cinbench 15 Single-core | 215 | 197 | Cinbench 15 Multi-core | 1615 | 1712 | Cinbench 20 Single-core | 501 | 472 | Cinbench 20 Multi-core | 3629 | 3847 | Cinbench 23 Single-core | 1376 | 1235 | Cinbench 23 Multi-core | 10379 | 10590 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i5-10600K |
AMD Ryzen 7 4800H | Single-Core | 2967 | 2691 | Multi-Core | 14674 | 19138 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i5-10600K |
AMD Ryzen 7 4800H | Single-Core | 1495 | 1191 | Multi-Core | 8815 | 8373 |
Comparison of specifications
In the specification comparison table, the most useful will be the the possibility of overclocking it and release date of the processor. The later the processor is released, the longer it will last in your computer. And the easier it will be to upgrade the system in the future. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will continue to maintain maximum FPS in the newest games. The savings are obvious! It turns out that there is no longer a need to buy a new CPU to enjoy the games any longer.
| Intel Core i5-10600K |
AMD Ryzen 7 4800H | Announcement date | April 01, 2020 | January 06, 2020 | Type | Desktop | Laptop | Socket | FCLGA1200 | FP6 | Core name | Comet Lake | Renoir | Architecture | x86 | Zen 2 | Generation | 10 | 3 | Turbo Frequency | 4.8 MHz | 4.2 MHz | Frequency | 4.1 MHz | 2.9 MHz | Cores | 6 | 8 | Threads | 12 | 16 | Bus rate | 8 GT/s | | Bit | 64 | 64 | Lithography | 14 nm | 7 nm | Transistors count | 4800 millions | 5400 millions | Power consumption (TDP) | 125 W | 45 W | Memory type | DDR4-2666 | DDR4 - Up to 3200MHz | Max. Memory | 128 Gb | | Memory Frequency | | | Memory bandwidth | 41.6 GB/s | | L1 cache | | | L2 cache | | 4MB | L3 cache | 12 MB | 8MB | Overclocking | Yes | Yes | Supports ECC | No | No | Part number | | 100-000000098
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Core i5-10600K is 29% better than Ryzen 7 4800H in terms of CPU frequency. Another difference is that Ryzen 7 4800H has 2 more core than Core i5-10600K. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i5-10600K is better: 24
The number of parameters for which AMD Ryzen 7 4800H is better: 11 Although it should be understood that all the figures in the table above do not mean that you should be guided entirely by them and trust a simple comparison of these numbers. Be sure to watch the video tests and read the opinion of real owners of Intel Core i5-10600K and AMD Ryzen 7 4800H before deciding which of the processors to buy for gaming.
Intel Core i5-10600K Processor Comparisons • Vs Ryzen 5 4600H • Vs Ryzen 7 2700 • Vs Core i7-10875H • Vs Core i7-10700 • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3700X • Vs Core i9-10850K • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Ryzen 7 5800X • Vs Core i7-9700K • Vs Ryzen 5 2600X • Vs Core i7-8700K • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Ryzen 3 3100 • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i5-1135G7 • Vs Core i7-7700K • Vs Core i5-9400F • Vs Ryzen 5 3400G • Vs Core i5-8400 • Vs Core i7-6700K • Vs Core i7-1065G7 • Vs Core i3-10100 • Vs Core i5-10300H • Vs Ryzen 5 2400G • Vs Core i7-7700 • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i5-9400 • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Core i9-9990XE • Vs Ryzen Threadripper PRO 3955WX • Vs Xeon W-3175X • Vs Ryzen Threadripper PRO 3945WX • Vs Core i9-9960X • Vs Ryzen 9 5900 • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Apple M1X • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i7-11700K • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 7 Pro 5750G • Vs Core i9-7940X • Vs Core i9-7960X • Vs Ryzen Threadripper 1950X • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i9-9920X • Vs Ryzen Threadripper 2920X • Vs Ryzen 3 3300X • Vs Ryzen 9 5900HX • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i3-10320 • Vs Core i7-9700E • Vs Xeon E5-2697R v4 • Vs Ryzen 3 PRO 4200GE • Vs Xeon W-1290T • Vs EPYC 7F32 • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-11375H • Vs Core i7-11370H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i7-10700KF • Vs Core i9-9900KS • Vs Core i7-7900X • Vs Core i9-10900T • Vs Core i9-9900KF • Vs Ryzen 5 PRO 3600 • Vs Core i7-9800X • Vs Ryzen 7 4800HS • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 5300G • Vs Core i9-10900TE • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Xeon W-11855M • Vs Core i7-12700H • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Core i3-1210U • Vs Core i5-1230U • Vs Core i3-1215U • Vs Ryzen 3 PRO 5475U • Vs Ryzen 5 5625U • Vs Core i9-9880H • Vs Core i9-9980HK • Vs Core i3-1215UL • Vs Core i3-1215UE • Vs Core i9-12900KF • Vs Core i3-N305 • Vs Core i3-N300 • Vs Ryzen 5 5600 • Vs Core i9-13900T • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 9 7900X • Vs Ryzen 9 7900X3D • Vs Ryzen 9 PRO 5945 • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i5-6500T • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i3-7100 • Vs Core i7-5820K • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 PRO 4655G
AMD Ryzen 7 4800H Processor Comparisons • Vs Ryzen 9 5950X • Vs Ryzen 9 3900X • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Core i7-10700K • Vs Ryzen 5 5600X • Vs Ryzen 7 3800X • Vs Core i9-10900K • Vs Ryzen 7 5800X • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 7 2700X • Vs Core i7-8700K • Vs Ryzen 5 2600 • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Ryzen 5 2400G • Vs Core i9-9900K • Vs Ryzen 5 3600X • Vs Ryzen 7 2700X • Vs Core i7-8700K • Vs Ryzen 5 2600 • Vs Core i7-10750H • Vs Core i7-9750H • Vs Core i7-8750H • Vs Core i9-10850K • Vs Ryzen 5 2600X • Vs Ryzen 5 1600 • Vs Core i7-8700 • Vs Core i5-10400F • Vs Ryzen 9 3950X • Vs Core i7-7700K • Vs Ryzen 9 5900X • Vs Ryzen 7 3700X • Vs Ryzen 5 3600 • Vs Ryzen 5 PRO 2600 • Vs Core i5-9400F • Vs Ryzen 5 3400G • Vs Core i7-6700K • Vs Core i7-4790K • Vs Core i7-10700 • Vs Ryzen 5 4600H • Vs Core i5-10400 • Vs Ryzen 5 3600XT • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Ryzen 9 3900XT • Vs Ryzen 7 4700U • Vs Ryzen 5 3500X • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Ryzen 7 2700 • Vs Core i7-9700 • Vs Ryzen 7 1700 • Vs Core i7-10700F • Vs Core i9-10980XE • Vs Core i9-9980XE • Vs Ryzen Threadripper 3960X • Vs Core i9-9990XE • Vs Ryzen Threadripper PRO 3955WX • Vs Xeon W-3175X • Vs Ryzen Threadripper PRO 3945WX • Vs Core i9-9960X • Vs Ryzen 9 5900 • Vs Ryzen 7 5700G • Vs Ryzen 7 5800H • Vs Ryzen 9 5980HS • Vs Ryzen 9 5980HX • Vs Apple M1X • Vs Ryzen 7 Pro 5850U • Vs Ryzen 7 5800U • Vs Apple M1 • Vs Ryzen 5 5600G • Vs Ryzen 9 4900U • Vs Core i7-11700K • Vs Core i5-11600K • Vs Ryzen 7 PRO 4750GE • Vs Ryzen 7 Pro 5750G • Vs Ryzen Threadripper 2990WX • Vs Core i9-7980XE • Vs Ryzen 9 PRO 3900 • Vs Core i9-10940X • Vs Ryzen 9 3900 • Vs Ryzen Threadripper 2950X • Vs Ryzen Threadripper 2970WX • Vs Core i9-7940X • Vs Core i9-7960X • Vs Ryzen Threadripper 1950X • Vs Core i9-10920X • Vs Ryzen Threadripper 2990X • Vs Core i9-9920X • Vs Ryzen Threadripper 2920X • Vs Ryzen 3 3300X • Vs Ryzen 9 5900HX • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Ryzen 7 5800 • Vs Core i7-1160G7 • Vs Core i7-9700E • Vs Xeon E5-2697R v4 • Vs Xeon W-1290T • Vs EPYC 7F32 • Vs Core i5-10600 • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i7-11800H • Vs Core i9-11900KF • Vs Core i9-11900 • Vs Core i9-11900F • Vs Core i9-11900T • Vs Core i7-11700KF • Vs Core i7-11700 • Vs Core i7-11700F • Vs Core i7-11700T • Vs Ryzen 7 3800XT • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Ryzen 7 PRO 3700 • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Ryzen Threadripper 1920X • Vs Core i5-11400F • Vs Core i5-11400T • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 7 5700U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900KF • Vs Core i9-7920X • Vs Core i9-10910 • Vs Core i9-10900X • Vs Core i7-10700KF • Vs Core i9-9900X • Vs Core i9-7900X • Vs Core i9-10900F • Vs Core i9-10900 • Vs Core i9-9820X • Vs Core i9-9900KS • Vs Core i7-7900X • Vs Core i9-10900T • Vs Ryzen 7 PRO 4750G • Vs Ryzen 7 PRO 4700G • Vs Core i9-9900KF • Vs Ryzen 5 PRO 3600 • Vs Ryzen 7 4700G • Vs Core i7-9800X • Vs Ryzen 9 4900H • Vs Ryzen 9 4900HS • Vs Ryzen 7 4800HS • Vs Ryzen 7 4700GE • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Ryzen 5 PRO 4650G • Vs Core i9-10900E • Vs Core i5-1155G7 • Vs Core i5-11500B • Vs Core i5-11400H • Vs Core i5-11500H • Vs Core i7-12700H • Vs Core i7-1250U • Vs Core i5-1245U • Vs Core i7-1255U • Vs Core i7-1260U • Vs Core i7-1265U • Vs Core i3-1220P • Vs Core i5-1240P • Vs Core i5-1250P • Vs Core i7-1260P • Vs Core i3-12100 • Vs Core i3-12100E • Vs Core i3-12100F • Vs Core i3-12100T • Vs Core i3-12100TE • Vs Core i3-12300 • Vs Core i3-12300T • Vs Ryzen 7 PRO 5875U • Vs Ryzen 5 PRO 5675U • Vs Ryzen 5 PRO 5650GE • Vs Ryzen 5 PRO 5650G • Vs Core i7-1265UE • Vs Core i7-1265UL • Vs Core i7-1255UL • Vs Core i5-1235UL • Vs Core i5-1245UL • Vs Core i5-1250PE • Vs Core i5-1245UE • Vs Core i3-1220PE • Vs Core i3-N305 • Vs Core i3-N300 • Vs Apple M2 • Vs Apple M1 Pro • Vs Apple M2 Pro • Vs Apple M2 Max • Vs Core i7-13700HX • Vs Core i7-13700H • Vs Core i9-13900HX • Vs Core i5-13600HX • Vs Core i9-13950HX • Vs Core i7-1360P • Vs Core i5-1350P • Vs Core i5-1340P • Vs Core i5-13500HX • Vs Core i9-13980HX • Vs Core i5-13600H • Vs Core i5-13500H • Vs Core i5-13505H • Vs Core i5-1345U • Vs Core i5-1335U • Vs Core i5-1334U • Vs Core i5-13420H • Vs Core i5-13450HX • Vs Core i7-1355U • Vs Core i7-1365U • Vs Core i3-1315U • Vs Core i3-1305U • Vs Core i7-1370P • Vs Core i7-13620H • Vs Core i7-13650HX • Vs Core i7-13705H • Vs Core i7-13800H • Vs Core i7-13850HX • Vs Core i9-13900H • Vs Core i9-13905H • Vs Core i5-8350U • Vs Core i7-8650U • Vs Celeron N5105 • Vs Ryzen 7 3750H • Vs Core i9-9880H • Vs Ryzen 5 5625C • Vs Ryzen 7 5825C • Vs Ryzen 3 5425C • Vs Ryzen 7 3700C • Vs Ryzen 5 3500C • Vs Ryzen 9 7945HX • Vs Ryzen 9 7845HX • Vs Ryzen 7 7745HX • Vs Ryzen 5 7645HX • Vs Ryzen 9 7940HS • Vs Ryzen 7 7840HS • Vs Ryzen 5 7640HS • Vs Ryzen 5 7535HS • Vs Ryzen 7 7736U • Vs Ryzen 7 7735U • Vs Ryzen 5 7535U • Vs Ryzen 3 7335U • Vs Ryzen 7 7730U • Vs Ryzen 5 7530U • Vs Ryzen 3 7330U • Vs Ryzen 5 7520U • Vs Ryzen 3 7320U • Vs Ryzen 7 PRO 6860Z
| |
|