|
Intel Core i5-10600 vs AMD Ryzen 5 3400G |
|
Processor comparisons 17-03-2021 Let's say there are difficulties with the choice of a processor, you will solve them by reading the detailed tests Intel Core i5-10600 vs AMD Ryzen 5 3400G and decide which is better for games or simple use for video editing, rendering, streaming, machine learning, programming. Here is useful information from real video editing and streaming tests or various benchmarks. A careful analysis of all the specifications, to make it easier to read, is summarized in the table. From the video comparison, you can get the results of parallel examination in special testing software like MATLAB, Prime95, UserBenchmark, SuperPi, Handbrake, Cinebench 23 (20, 15), Blender, Furmark, Gears 5, Dolphin Emulator, World of Tanks enCore Benchmark, VeraCrypt, WPrime, RealBench, DaVinci Resolve Studio, 7zip, GeekBench 6, 5.2, PassMark, PCMark 10, AIDA64, 3DMark, Blender. Gaming performance of CPUs in: - Call of Duty: Warzone and Modern Warfare
- Red Dead Redemption 2
- Valheim
- Borderlands 3
- Overwatch
- Fortnite
- Halo Infinite
- Rainbow Six Siege
- Valorant
- Fallout 76
- Watch Dogs Legion
- Last Man Standing
- World of Warcraft: Shadowlands
- Death Stranding
- Assassin's Creed Valhalla
- Grand Theft Auto V
- DOOM: Eternal
- Cyberpunk 2077
- Apex Legends
After reading the results of joint benchmarks and videos, you can already make an briefed decision about which CPU is better to buy for gaming AMD Ryzen 5 3400G or Intel Core i5-10600.
Summary benchmark resultsAs a percentage of the maximum value based on a sample from the entire base of all processors Processor Benchmark
Core i5-10600 | 54% |
Ryzen 5 3400G | 52% | This value shows the performance of the processors in single-threaded and multi-threaded mode. In this comparison, Core i5-10600 is 3% better than Ryzen 5 3400G. The data source is several popular tests. Detailed information can be found below.
Gaming performance Summary result of all game benchmarks.Core i5-10600 | 54% |
Ryzen 5 3400G | 52% | For the maximum in this test, the results of the most powerful processor in the site database are taken. And of course, this is a server processor, on which no one will play games. Because this processor costs several tens of thousands of dollars. Therefore, if you think that the selected CPU has a small game result, look at the FPS that it produces in real games in the summary table below. List of other games in which CPU comparisons were performed: Horizon Zero Dawn, Monster Hunter World, Forza Horizon 4, DOTA 2A, Battlefield V, Counter-Strike: Global Offensive (CS GO), Resident Evil 7 Biohazard, The Witcher 3: Wild Hunt, NBA 2K20, PlayerUnknown's Battlegrounds (PUBG), Half-Life: Alyx, Metro Exodus, Hitman 3, Ghostrunner, Microsoft Flight Simulator, Shadow of the Tomb Raider, Control, League of Legends (LOL).
Gaming benchmarkFortnite | 95.2 | 92.5 | Valorant | 108.1 | 105.1 | Cyberpunk 2077 | 60.6 | 58.9 | Apex Legends | 101.6 | 98.8 | Call of Duty Warzone | 81.1 | 78.8 | Overwatch | 87.6 | 85.2 | Red Dead Redemption 2 | 74.6 | 72.5 | DOOM Eternal | 54.1 | 52.6 | Warzone | 84.3 | 82.0 | Assassin's Creed | 90.8 | 88.3 | Valheim | 89.7 | 87.3 | The numbers in this table indicate the maximum FPS that was received on the device with the corresponding processor. Depending on the configuration of the computer (RAM size and Video Card) and graphics quality settings (Ultra, Medium, Normal), the results may differ quite significantly. We recommend that you better study the results of the Cinebench, GeekBench and Passmark becnmarks. The computers participating in the comparisons not only were the equipped with different amounts of RAM and different video cards. But users also tested them at different screen resolutions: 4K, 2K or FullHD. Therefore, the game benchmark data is approximate. But all video cards met the average system requirements of games. To be sure exactly how much performance the processor will be in games, if you get acquainted with the benchmarks that are made with the same video card that is installed in your computer.
Power consumption
Core i5-10600 | 67% |
Ryzen 5 3400G | 54% | To make a finishing resolution on which processor is better, you should also consider the generation of its core. The newer the processor generation, the better its performance in games and benchmarks, as well as its energy efficiency. In this case the Core i5-10600 is more energy efficient than the Ryzen 5 3400G as it consumes less power: 65W vs. 65W. Power consumption is particularly important for laptops. Also, when choosing a processor cooling system, it will be useful to know its TDP. You need to buy a cooler that has the TDP data specified in the specification was greater than the TDP of the compared processor.
Software benchmarksIf you want to use the processor not only for gaming, but also for video editing or video rendering, programming, streaming, machine learning, then first of all you need to pay attention to the performance in multi-threaded mode. In this mode, the processor includes all threads and cores that it has to the maximum to achieve maximum performance. You will find out this data from the benchmark tables below. Before using the data from these tests, be sure to make sure that the program that you are going to use on your computer can work in multi-threaded mode. Because there are still many programs that can use only one core to run, and all the advantages of multi-core mode are unused. Cinebench 23, 20 an 15 The results of this benchmark show Single-threaded and Multi-threaded CPU performance | Intel Core i5-10600 |
AMD Ryzen 5 3400G | Cinbench 15 Single-core | 214 | 169 | Cinbench 15 Multi-core | 1569 | 875 | Cinbench 20 Single-core | 494 | 412 | Cinbench 20 Multi-core | 3556 | 1969 | Cinbench 23 Single-core | 1286 | 1068 | Cinbench 23 Multi-core | 9024 | 4810 |
Passmark This popular benchmark displays Multi-threaded and Single-threaded processor performance | Intel Core i5-10600 |
AMD Ryzen 5 3400G | Single-Core | 2832 | 2348 | Multi-Core | 13964 | 9407 |
GeekBench 6, 5.2 This benchmark shows Multi-threaded and Single-threaded processor performance | Intel Core i5-10600 |
AMD Ryzen 5 3400G | Single-Core | 1307 | 1057 | Multi-Core | 7015 | 4426 |
Comparison of specifications
In the specification comparison table, the most useful will be the the possibility of overclocking it and release date of the processor. The newer the processor, the longer it will last you. And the easier it will be to upgrade the system later. The same benefits from the presence of overclocking. When the processor can be overclocked, increasing its performance, then it will continue to maintain maximum FPS even in new games. Accordingly, you do not need to buy a new CPU to enjoy the games any longer. The economy are obvious!
| Intel Core i5-10600 |
AMD Ryzen 5 3400G | Announcement date | April 01, 2020 | July 07, 2019 | Type | Desktop | Desktop | Socket | FCLGA1200 | AM4 | Core name | Comet Lake | Picasso | Architecture | x86 | Zen+ | Generation | 10 | 3 | Turbo Frequency | 4.8 MHz | 4.2 MHz | Frequency | 3.3 MHz | 3.7 MHz | Cores | 6 | 4 | Threads | 12 | 8 | Bus rate | 8 GT/s | | Bit | 64 | 64 | Lithography | 14 nm | 12 nm | Transistors count | 4800 millions | 4200 millions | Power consumption (TDP) | 65 W | 65 W | Memory type | DDR4-2666 | DDR4 | Max. Memory | 128 Gb | | Memory Frequency | | 2933 | Memory bandwidth | 41.6 GB/s | | L1 cache | | 384KB | L2 cache | | 2MB | L3 cache | 12 MB | 4MB | Overclocking | Yes | Yes | Supports ECC | No | No | Part number | | YD3400C5M4MFH YD3400C5FHBOX YD3400C5FHMPK
| In this comparison block, you should pay attention to the differences in clock speed and the number of cores. Here Ryzen 5 3400G is 10% better than Core i5-10600 in terms of CPU frequency. Another difference is that Core i5-10600 has 2 more core than Ryzen 5 3400G. Also keep in mind that high CPU frequency affects battery life through power consumption (relevant for laptops).
Result:
The number of parameters for which Intel Core i5-10600 is better: 30
The number of parameters for which AMD Ryzen 5 3400G is better: 6 However, it should be realized that all the data in the table above do not mean that taking them into account you should undividedly trust a simple quantitative comparison. Be sure to watch benchmarks video and read the opinion of of people who bought Intel Core i5-10600 and AMD Ryzen 5 3400G before making a decision which processor to buy for gaming and which not.
Intel Core i5-10600 Processor Comparisons • Vs Ryzen 5 2600X • Vs Core i7-9700K • Vs Ryzen 7 1700 • Vs Core i5-10600K • Vs Ryzen 5 4600H • Vs Ryzen 7 2700 • Vs Core i7-10875H • Vs Core i7-10700F • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Core i7-10700 • Vs Xeon W-1290T • Vs Ryzen 5 3600X • Vs Xeon E5-2697R v4 • Vs Core i9-9900K • Vs Ryzen 5 3600XT • Vs Ryzen 7 4800H • Vs Core i7-10700K • Vs Ryzen 7 PRO 4750GE • Vs Core i5-11600K • Vs Ryzen 9 4900U • Vs Ryzen 7 5800 • Vs Ryzen 5 5600G • Vs Apple M1 • Vs Ryzen 5 5600X • Vs Ryzen 7 5800U • Vs EPYC 7F32 • Vs Ryzen 7 3700X • Vs Ryzen 9 5900HS • Vs Core i9-10850K • Vs Core i7-8700K • Vs Ryzen 7 4700U • Vs Ryzen 5 PRO 2600 • Vs Core i7-9700 • Vs Ryzen 5 3500X • Vs Ryzen 5 2600 • Vs Core i7-8700 • Vs Ryzen 3 3300X • Vs Core i7-9700E • Vs Core i7-10750H • Vs Core i5-10400F • Vs Core i5-10400 • Vs Ryzen 5 1600 • Vs Ryzen 3 4300GE • Vs Ryzen 3 3100 • Vs Core i5-1145G7 • Vs Core i7-1160G7 • Vs Ryzen 5 4500U • Vs Core i7-9750H • Vs Ryzen 3 PRO 4200GE • Vs Core i5-9600K • Vs Core i7-1165G7 • Vs Core i7-8750H • Vs Core i3-10320 • Vs Core i5-1135G7 • Vs Core i7-7700K • Vs Core i5-9400F • Vs Core i5-9400 • Vs Ryzen 5 3350G • Vs Core i5-10500 • Vs Core i7-10700T • Vs Ryzen 5 PRO 4400GE • Vs Core i7-10870H • Vs Ryzen 5 4600HS • Vs Xeon Gold 6130T • Vs Ryzen 5 4600U • Vs Xeon E5-2680R v4 • Vs Xeon W-2235 • Vs Core i5-10600T • Vs Core i7-11800H • Vs Core i5-11600KF • Vs Core i5-11600 • Vs Core i5-11600T • Vs Core i5-11500 • Vs Core i5-11500T • Vs Core i5-11400 • Vs Core i5-11400F • Vs Core i5-11400T • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-11300H • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Ryzen 5 PRO 4650U • Vs Ryzen 5 2600E • Vs Ryzen 5 5600HS • Vs Ryzen 5 5500U • Vs Ryzen 5 5600H • Vs Ryzen 5 5600U • Vs Core i9-10900T • Vs Ryzen 5 PRO 3600 • Vs Core i7-9800X • Vs Ryzen 7 Extreme Edition • Vs Core i7-7820X • Vs Ryzen 7 4800U • Vs Core i7-6950X • Vs Ryzen Threadripper 1900X • Vs Core i9-9900 • Vs Ryzen 7 PRO 2700X • Vs Core i9-10980HK • Vs Ryzen 5 PRO 4650G • Vs Core i9-10885H • Vs Ryzen 5 PRO 4400G • Vs Core i9-10880H • Vs Ryzen 7 1800X • Vs Core i5-10600KF • Vs Ryzen 5 PRO 4650GE • Vs Core i7-9700KF • Vs Ryzen 5 4600GE • Vs Ryzen 7 PRO 1700X • Vs Core i7-8086K • Vs Ryzen 7 PRO 4750U • Vs Core i9-9900T • Vs Ryzen 7 PRO 2700 • Vs Ryzen 7 2700E • Vs Core i7-6900K • Vs Core i7-9700F • Vs Ryzen 7 1700X • Vs Core i7-5960X • Vs Ryzen 3 4300G • Vs Core i7-7800X • Vs Ryzen 7 PRO 1700 • Vs Core i7-10850H • Vs Ryzen 3 5300G • Vs Ryzen 5 PRO 4500U • Vs Core i5-11320H • Vs Core i5-11260H • Vs Core i7-11390H • Vs Xeon W-10855M • Vs Ryzen 5 PRO 5650U • Vs Xeon W-11855M • Vs Celeron 7300 • Vs Celeron 7305 • Vs Pentium 8500 • Vs Pentium 8505 • Vs Core i3-1210U • Vs Core i3-1215U • Vs Ryzen 5 5625U • Vs Core i9-9880H • Vs Core i9-9980HK • Vs Core i7-8700B • Vs Ryzen 5 3500 • Vs Ryzen 5 1600X • Vs Core i3-N300 • Vs Ryzen 5 5600 • Vs Ryzen 5 7600 • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i3-13300F • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7950X3D • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE
AMD Ryzen 5 3400G Processor Comparisons • Vs Core i5-9400F • Vs Core i7-8750H • Vs Core i7-9750H • Vs Ryzen 5 1600 • Vs Core i7-10750H • Vs Core i7-8700 • Vs Ryzen 5 2600 • Vs Ryzen 5 PRO 2600 • Vs Core i7-8700K • Vs Ryzen 5 2600X • Vs Ryzen 7 2700X • Vs Ryzen 5 3600 • Vs Ryzen 5 3600X • Vs Core i9-9900K • Vs Core i7-6700K • Vs Ryzen 5 2400G • Vs Core i7-4790K • Vs Ryzen 5 3500U • Vs Core i7-7700HQ • Vs Core i7-3770 • Vs Core i5-10400F • Vs Core i7-4790 • Vs Core i7-7700K • Vs Core i7-6700HQ • Vs Ryzen 7 5800X • Vs Core i9-10900K • Vs Ryzen 7 3800X • Vs Core i9-10850K • Vs Ryzen 7 3700X • Vs Ryzen 5 5600X • Vs Core i7-10700K • Vs Ryzen 7 4800H • Vs Core i7-10700 • Vs Core i7-1065G7 • Vs FX-8350 Eight-Core • Vs Ryzen 5 4600H • Vs Core i7-6700 • Vs Core i5-10400 • Vs Core i5-6500 • Vs Ryzen 5 3600XT • Vs Core i5-8250U • Vs Core i5-10210U • Vs Core i5-9600K • Vs Core i7-4770 • Vs Core i5-8400 • Vs Core i5-9300H • Vs Core i7-1165G7 • Vs Core i7-10510U • Vs Core i7-2600 • Vs Ryzen 7 4700U • Vs Core i5-4590 • Vs Ryzen 5 3500X • Vs Core i7-8550U • Vs Core i7-9700K • Vs Ryzen 5 4500U • Vs Ryzen 3 3100 • Vs Core i5-1035G1 • Vs Core i5-4570 • Vs Core i5-4460 • Vs Core i5-10300H • Vs Core i7-7700 • Vs Core i7-10875H • Vs Core i5-1135G7 • Vs Core i5-8265U • Vs Core i3-10100 • Vs Ryzen 3 3200G • Vs Core i5-8300H • Vs Ryzen 7 2700 • Vs Core i5-7400 • Vs Core i7-9700 • Vs Core i5-10600K • Vs Core i7-4770K • Vs Ryzen 7 1700 • Vs Core i3-9100F • Vs Core i7-10700F • Vs Core i5-9400 • Vs Core i7-8565U • Vs Core i7-3770K • Vs Ryzen 5 3550H • Vs Ryzen 3 3300X • Vs Core i5-1145G7 • Vs Ryzen 3 4300GE • Vs Core i7-1160G7 • Vs Athlon Gold PRO 3150G • Vs Core i3-10320 • Vs Core i7-9700E • Vs Core i3-10100F • Vs Ryzen 5 3350G • Vs Ryzen 5 3450U • Vs Ryzen 3 PRO 4200GE • Vs Core i5-10200H • Vs Core i3-1115G4 • Vs Core i3-10300T • Vs Athlon Gold PRO 3150GE • Vs Core i3-9350K • Vs Core i5-10500 • Vs Core i7-10700T • Vs Core i5-9300HF • Vs Ryzen 5 4600U • Vs Ryzen 5 3550U • Vs Core i5-10600T • Vs Core i3-10325 • Vs Core i3-10305 • Vs Core i3-10305T • Vs Core i3-10105T • Vs Core i3-10105 • Vs Core i3-10105F • Vs Core i5-1145GRE • Vs Core i5-1145G7E • Vs Core i5-1140G7 • Vs Core i5-1130G7 • Vs Core i7-1185GRE • Vs Core i7-1185G7E • Vs Core i7-11375H • Vs Core i7-1185G7 • Vs Core i7-11370H • Vs Core i7-1180G7 • Vs Core i3-1120G4 • Vs Core i3-1125G4 • Vs Ryzen 3 5400U • Vs Ryzen 3 5300U • Vs Ryzen 3 4300G • Vs Ryzen 3 PRO 4350GE • Vs Ryzen 3 PRO 4350G • Vs Core i5-8260U • Vs Ryzen 5 PRO 4500U • Vs Core i5-10500T • Vs Ryzen 3 PRO 4450U • Vs Core i5-10400T • Vs Ryzen 5 3350GE • Vs Core i3-11100B • Vs Core i7-1068NG7 • Vs Ryzen 5 PRO 3350GE • Vs Ryzen 5 PRO 3350G • Vs Xeon E-2234 • Vs Ryzen 5 3400GE • Vs Core i7-10810U • Vs Ryzen 5 3580U • Vs Core i3-10300 • Vs Core i5-1038NG7 • Vs Core i5-9500TE • Vs Core i5-10400H • Vs Core i5-9600T • Vs Core i7-8569U • Vs Core i7-10710U • Vs Core i7-9850HL • Vs Core i5-1035G7 • Vs Core i5-1035G4 • Vs Core i7-8809G • Vs Core i5-8500 • Vs Core i5-9500F • Vs Core i7-9700TE • Vs Core i5-9500 • Vs Core i5-9600 • Vs Core i5-8600T • Vs Core i7-8559U • Vs Core i5-8500B • Vs Core i5-8600 • Vs Core i7-8850H • Vs Core i9-8950HK • Vs Core i5-8259U • Vs Core i5-8600K • Vs Ryzen 5 2500X • Vs Ryzen 3 2200G • Vs Ryzen 5 5600 • Vs Ryzen 5 7600 • Vs Core i5-13600T • Vs Core i5-13400T • Vs Core i3-13100F • Vs Ryzen 7 5700X • Vs Ryzen 3 1200 • Vs Ryzen 5 5500 • Vs Core i5-4690K • Vs Ryzen 3 PRO 5350GE • Vs Ryzen 9 7900X • Vs Ryzen 9 5900 • Vs Ryzen 9 PRO 5945 • Vs Ryzen 7 5700GE • Vs Ryzen 7 5800X3D • Vs Core i5-7500 • Vs Core i3-8100 • Vs Core i5-6600K • Vs Ryzen 5 4500 • Vs Core i3-6100 • Vs Core i5-6500T • Vs Core i5-6600 • Vs Core i5-7600K • Vs Ryzen 5 1500X • Vs Core i7-5820K • Vs Ryzen 5 5600GE • Vs Ryzen 3 5300GE • Vs Ryzen 7 4700GE • Vs Ryzen 5 4600G • Vs Ryzen 5 4600GE • Vs Ryzen 5 PRO 5645 • Vs Ryzen 3 PRO 4355G • Vs Ryzen 3 PRO 4355GE
| |
|